
TimeInspector: A Static Analysis Approach for Detecting Timing Attacks

Fatih Durmaz§, Nureddin Kamadan§, Melih Taha Öz§, Musa Unal§,
Arsalan Javeed, Cemal Yilmaz, and Erkay Savas

Faculty of Engineering and Natural Sciences
Sabanci University
Istanbul, Turkey

{fatih.durmaz, nkamadan, melihoz, musa, ajaveed, cyilmaz, erkays}@sabanciuniv.edu

Abstract—We present a static analysis approach to detect
malicious binaries that are capable of carrying out a tim-
ing attack. The proposed approach is based on a simple
observation that the timing attacks typically operate by
measuring the execution times of short sequences of in-
structions. Consequently, given a binary, we first construct
the control flow graph of the binary and then determine
the paths between the pairs of time readings, on which a
suspiciously low number of instructions might be executed.
In the presence of such a path, we mark the binary as
potentially malicious and report all the suspicious paths
identified. In the experiments, where a collection of benign
and malicious binaries were used, the proposed approach
correctly detected all the malicious binaries with an accuracy
up to 99.5% and without any false negatives.

Index Terms—timing attacks, side-channel attacks, static
program analysis, malware analysis

1. Introduction

Side-channel attacks leverage the information that is
unintentionally leaked by a system, such as execution
time, power consumption, and cache access behavior [1]–
[3], to exfiltrate secret information processed by the sys-
tem. These attacks are generally quite difficult to mitigate
as, in many of the attacks, neither the algorithms nor the
implementations actually leak any information. However,
when the systems are forced to share some software and/or
hardware resources (e.g., by running multiple systems on
the same computing platform), they suddenly start leaking
information.

A prominent type of side-channel attacks, which is
also the focus of this paper, is the timing attacks [4]–
[6]. Timing attacks typically operate by measuring the
execution times of short-running operations. The differ-
ences between the measurements are then associated with
secret information, such as the private key processed by
a cryptographic algorithm [7].

Cache-based timing attacks, such as Flush+Flush [8],
Flush+Reload [9], and Prime+Probe [10], as well as tran-
sient execution attacks, such as Meltdown [11], which
incorporate cache-based timing attacks, exploit timing
variations in memory accesses to determine if the data
associated with a memory address of interest is in the
cache. To this end, the time is read before and after

§These authors contributed equally

the memory access and the difference is attributed to the
operation. Since the time required to fetch the requested
data from the DRAM is significantly more than fetching
it from the cache, smaller execution times would indicate
that the data is currently in the cache. This information
can then be used in various different ways to exfiltrate
secret information. For instance, in Meltdown [11], it is
used to read a secret value stored at a memory address,
which the attacker should not normally be able to access.
More specifically, the secret value is used as an index into
an array owned by the attacker. Although the access will
eventually result in a segmentation fault, due to the out of
order execution, the error occurs after the respective array
entry has been brought to the cache. Therefore, figuring
out which entry of the previously flushed-out array has
been brought to the cache, would reveal the secret value.

In previous work, we have developed a generic ap-
proach, called Detector+, aiming to detect, isolate, and
prevent timing attacks [12]. The proposed approach is,
indeed, based on a simple, yet quite effective observation:
In a timing attack, the attacker typically needs to carry out
(possibly repeatedly) a pair of successive time readings in
a short period of time. Therefore, Detector+ intercepts
the time readings initiated by the processes. If two con-
secutive time readings happen to be suspiciously close
to each other in time, some random noise is introduced
into the readings to prevent any potential ongoing attack.
In another work [13], we have developed HyperDetector,
demonstrating that the same idea can also be effectively
and efficiently utilized in virtualized environments by
intercepting the time reading requests, including the ex-
ecutions of the rdtsc machine instruction, at the level of
a hypervisor. In the empirical studies, the aforementioned
approaches detected all the malicious time measurements
with almost perfect accuracy, prevented all the attacks, and
correctly pinpointed all the malicious processes involved
in the attacks without any false positives.

Both Detector+ and HyperDetector are, however, dy-
namic program analysis-based approaches. From this per-
spective, they are reactive approaches as they let po-
tentially malicious applications to run and then monitor
and analyze the executions at runtime with the goal of
mitigating the harmful effects of the attacks. In this work,
we present a proactive and complementary static analysis
approach, called TimeInspector, to detect potentially ma-
licious binaries before these binaries are even executed.
At a very high level, given a binary, TimeInspector first
constructs the control flow graph (CFG) of the binary.

Then, the paths between all pairs of times readings are
determined. Next, the number of machine instructions
occurring on these paths are counted. Finally, the paths,
which contain suspiciously few instructions between two
time readings, are marked as potentially malicious.

We empirically evaluated the TimeInspector by
conducting experiments on both benign binaries
and the binaries belonging to a wide spectrum of
timing attacks, namely sweep-counting attacks [14],
loop-counting attacks [15], Meltdown [11],
Flush+Reload [9], Flush+Flush [9], Prime+Probe [10],
and Evict+Reload [16]. In these experiments, the
proposed approach correctly detected all the malicious
binaries with an accuracy up to 99.5% and without
any false negatives. We have also successfully tested
TimeInspector on a family of malware, called GuLoader,
which employs timing-based evasion checks [17].

The remainder of the paper is organized as follows:
Section 2 presents the threat model addressed in this work;
Section 3 introduces the approach; Section 4 discusses
the empirical studies carried out to evaluate the proposed
approach; Section 5 presents related work; and Section 6
concludes with some potential future work ideas.

2. Threat Model

In the threat model addressed by this work, an adver-
sary provides a piece of malicious code to be executed on
a victim system. Although the malicious code could be in
the form of a source code and/or a binary code (including
the machine-agnostic binaries, such as bytecodes), we, in
this work, solely focus on the latter types of codes as it
represents more practical attack scenarios. The proposed
approach, however, is readily applicable to the former
types of codes, too. In either case, the malicious code is
made available to the victim system before the execution
and the adversary cannot prevent the victim system from
analyzing the instructions in a static manner.

The malicious code aims to exfiltrate information,
which is indirectly leaked by the system through a timing-
based side-channel. The side-channels of interest are
formed by measuring the execution times of some short-
running operations. To this end, the measurements are
made by reading the time before and after each operation
of interest and attributing the difference to the operation.
All the malicious time measurements are made locally on
the victim system by using the timing primitives supported
by the system, such as by using the rdtsc (or similar)
instructions or by making system calls to read the time.
Furthermore, the instructions to be executed to carry out
the operations of interest are a part of the malicious code.

Consequently, the remote timing attacks where the
time measurements are made remotely [18] and the at-
tacks where the operations, the execution times of which
are measured for malicious intents, are carried out re-
motely [19], are out of the scope of this work. Note
that, in the former case, the time readings are performed
remotely while the instructions being timed may be exe-
cuted locally. In the latter case, however, although the time
readings may be performed locally, the instructions are ex-
ecuted remotely. In either case, the number of instructions
executed in between two consecutive time readings may
not be determined locally. Similarly, the timing attacks,

which operate by measuring the execution times of long-
running operations (i.e., the ones, which require a large
number of instructions to be executed), such as measuring
the time it takes to parse a JavaScript file or a media file
to predict the size of an external resource, are out of the
scope [19].

Furthermore, we, in this work, assume that the time
measurements are carried out by using the native timers
provided by the victim system (e.g., by using the timing
primitives provided by the underlying system), so that
the places in the code where the time is being read
can automatically be identified. If, however, the time
measurements are obtained by using implicit (e.g., non-
native) and often non-clock-based timing sources [20],
then TimeInspector may not detect the presence of the
time measurements. Interestingly enough, though, we be-
lieve that the proposed approach could also be adapted
to detect the implementations of certain types of implicit
timing sources, which we leave as a future work. Further
discussion on the subject can be found in Section 4.4.

3. TimeInspector

TimeInspector takes as input a binary and determines
whether the binary is likely to carry out a timing attack or
not. In the case of a suspicion, the execution paths (i.e.,
the sequences of machine instructions) that form the basis
for the suspicion, are reported, so that the binary can later
be analyzed in a focused manner.

An integral part of TimeInspector is to construct the
CFG of a given binary. For this work, without losing the
generality of the proposed approach, we use radare2 * –
a framework for reverse-engineering and analyzing Linux
binaries. Note, however, that the proposed approach is
readily applicable to any operating system.

We first construct the CFGs in an intra-procedural
manner, such that one CFG is constructed per module,
e.g., function. Each node in these CFGs corresponds to a
basic block – a consecutive sequence of machine instruc-
tions, which are all guaranteed to be executed once the
first instruction in the sequence is executed. Consequently,
branching instructions in basic blocks can appear only as
the last instructions of the blocks. We further augment
the CFG of a module with a special entry and exit node,
representing the entry and exit of the module, respectively.
The references made into statically as well as dynamically
linked libraries are also resolved during the construction
of the CFGs. Figure A.1a presents a simple CFG, sum-
marizing the attack loop of Flush+Flush [8].

Once the initial CFGs are constructed, we determine
the nodes that contain an instruction for reading time, e.g.,
the rdtsc instruction, or that contain a function call,
e.g., the call instruction. We then split these nodes into
multiple nodes, such that every node in the resulting CFG
represents a basic block containing a single time reading
instruction, or a single function call, or a sequence of other
instructions, but not a mixed of them.

We, in particular, represent each time reading in-
struction in a node of its own, so that the problem of
identifying the execution paths between two time read-
ings can be expressed as a reachability problem in graph

*Radare2, https://github.com/radareorg/radare2

theory. Similarly, we choose to have a separate node for
each function call, so that we can carry out an inter-
procedural analysis by linking these nodes to the CFGs
of the respective callees. Figure A.1b presents an example
where the original CFG in Figure A.1a is modified by
splitting node A into 5 nodes (A1, . . . , A5), such that each
rdtsc instruction has its own separate node. Note that,
from the perspective of the flow of control, both CFGs
are semantically identical.

For the analysis, we first determine the function calls
that can directly or indirectly read time. In the remainder
of the paper, the nodes having such calls are referred to
as time-reading calls, whereas the nodes that directly read
the time with the help of a machine instruction, such as
rdtsc, are referred to as time-reading instructions.

TimeInspector operates by determining the minimum
number of instructions that can be executed between each
pair of time readings, so that the paths, which can po-
tentially attempt to measure the execution times of suspi-
ciously few instructions, can be determined. Consequently,
we cast the problem to that of finding the shortest path
between two nodes (i.e., between two time-reading nodes)
in directed weighted graphs (i.e., in CFGs), where the
length of a path is defined as the number of instructions
to be executed on the path.

More specifically, we determine all the ordered pair
of nodes (u, v) in the CFGs, such that u is a time-reading
instruction and v is either a time-reading instruction or
a time-reading function. The reason for the distinction
between the types of the source and the target nodes, will
become clear shortly. Next, we eliminate the pairs where
v is not reachable from u as the respective time readings
may not be used for time measurements. We then compute
the shortest path for each remaining pair.

To this end, we define the weight of an edge from
node z to w as the number of machine instructions in-
cluded in the basic block represented by w. If, however,
w represents a call to a function func, the weight is
computed as the minimum of the length of the shortest
path from the entry node of func to an exit node and
the length of the shortest path from the entry node to a
time reading instruction (if any), which can directly or
indirectly be executed by func. Furthermore, the weight
for an incoming edge to a function call is computed
recursively by traversing all the direct and indirect calls
made by the function.

Once the weights are determined, we use a modified
version of the Dijkstra’s weighted shortest path algorithm
to find the shortest path between two time-reading nodes.
Note that since the weight for a time-reading call is
associated with the incoming edges, to be able to correctly
compute the path lengths, we make sure that the source
nodes are always time-reading instructions (rather than
time-reading calls), while the target nodes can be any type
of time-reading nodes. That is, given the way we compute
the weights, using a time-reading call as a source node
would not account for the instructions to be executed in
the call after the time has been read.

One modification we make to the Dijkstra’s algorithm
is due to the fact that the source and target nodes (u and v,
respectively) may not necessarily be distinct in our case.
For example, a single time reading can be carried out
in a loop. In such a case, there will be a path from the

time reading node to itself through the loop (i.e., u = v).
Therefore, even if the source and the target nodes on a path
are the same, the path is capable of making a legitimate
time measurement. When u = v, the Dijkstra’s shortest
path algorithm, on the other hand, assumes that the length
of the shortest path is 0, which, in our case, is misleading.
To overcome this issue, although we start with u and, as
a first step, use the weights of the edges to the adjacent
nodes as the lengths of the best paths so far discovered to
these nodes, we assume u is at distance ∞ from itself and
never mark u as visited throughout the search. Therefore,
the shortest path from u to itself via other nodes keeps on
updated as needed until the search is terminated.

Once the lengths of the shortest paths between every
pair of time-reading nodes of interest are determined, we
mark the ones that are smaller than a predetermined cutoff
value (in our case, cutoff = 44) as suspicious. And, in
the presence of at least one suspicious path, the binary
under analysis is marked as potentially malicious and all
the suspicious paths identified are reported. For this work,
we determine the cutoff value by analyzing the benign
binaries. As the cutoff value, we use the smallest path
length observed, which is greater than the 5% of all the
shortest paths obtained from the benign binaries.

4. Experiments

To evaluate the proposed approach, we have carried
out a series of experiments.

4.1. Subject Binaries

In these experiments, we used 749 benign binaries
from various domains, including systems, networking,
and persistent storage, together with 11 malicious bi-
naries. We, in particular, chose the aforementioned be-
nign binaries because they represent the binaries com-
monly found in modern Linux systems. Furthermore,
the malicious binaries used in the experiments im-
plemented various flavors of the sweep-counting at-
tacks [14], loop-counting attacks [15], Meltdown [11],
Flush+Reload [9], Flush+Flush [21], Prime+Probe [10],
and Evict+Reload [16]. All of the malicious binaries were
obtained by using the publicly available implementations
of the aforementioned attacks.

4.2. Operational Framework

We first constructed the initial CFGs by using
radare2, where the external references made into the
shared objects were resolved with the help of ldd [22].
Next, we determined all the time reading instructions
in all the binaries. To this end, we searched both for
the rdtsc (or similar) machine instructions and the
system calls as well as the functions that read time,
including gettimeofday, system_clock::now,
timespec_get, and time. We then modified the
CFGs, such that each time-reading instruction or a func-
tion call is included in its own separate node. Finally,
we identified the weighted shortest paths between each
pair of time readings as explained in Section 3. All the
experiments were carried out on an Intel Xeon E5606

0 100 200 300 400
Shortest Path length

0

3

6

9

12

15

18

21

24

27
Nu

m
be

r o
f b

in
ar

ie
s

 cutoff

benign
malicious

Figure 1: Histogram of the shortest path lengths obtained
from the benign and malicious binaries.

2.13GHz GHz machine with 32 GB of RAM running
20.04.1-Ubuntu with kernel version 5.13.0 and radare2
version 5.6.9.28082 (commit 34ce17da).

4.3. Data and Analysis

We first observed that 677 out of 749 benign binaries
did not contain any instructions or functional calls for
making time measurements. The remaining 72 benign
binaries, on the other hand, had at least one path between
two time readings in their CFGs. This observation is,
indeed, well-aligned with our previous observations [12],
[13] that applications operating in the production environ-
ments often do not need to measure the execution times.
That is, for many applications, even an attempt to make
a time measurement, can, indeed, be considered to be
suspicious, especially when measuring time is not required
for the application to operate.

We then analyzed the distributions of the shortest path
lengths obtained from the benign and malicious binaries.
Figure 1 visualizes the results we obtained where the be-
nign binaries without any time measurements are excluded
for visualization purposes.

We first observed that the maximum shortest path
length obtained from the malicious binaries was 28. For
example, the Flush+Flush attack [8] in Figure A.1 mea-
sures the execution time of the clflush instruction by
using two rdtsc instructions with 6 other instructions in
between, i.e., with a shortest path of length 6.

We then observed that using 44 as the cutoff value as
explained in Section 3, correctly identified all the mali-
cious binaries, i.e., with 0 false negative, while resulting
in 4 false positives for the 72 benign binaries with the
time measurements. That is, when only the 72 benign
binaries with the time measurements are considered, the
accuracy of the proposed approach is 95%. And, when all
the benign binaries are considered, the accuracy is 99.5%.

An in-depth analysis of the false positives revealed
that all of the false positives were caused by the bi-
naries, which use the same or a similar approach to
check for the existence of a particular clock at runtime.
More specifically, although it is possible to check the
availability of a certain clock statically at compile-time,
the aforementioned benign binaries have a simple while

loop, which first attempts to read the time by using the
CLOCK_MONOTONIC timer. In the case of a failure, the
timer is changed to CLOCK_REALTIME in the body of
the loop, such that the aforementioned timer is probed
until a successful time reading is obtained. Indeed, three
out of four of the binaries, which were falsely marked
as malicious, had exactly the same while loop resulting
in a shortest path of length 24, while the remaining
binary had a similar loop, resulting in a shortest path of
length 26. Consequently, one way to suppress these and
similar false positives is to capture the patterns in such
benign uses of the timers and filter them out in the static
analysis. For example, besides having exactly the same or
similar sequences of machine instructions, one common
characteristic among these binaries is that, although there
is a path between two time readings, the readings cannot
be used for any time measurements as at least one of the
readings always results in a failure.

In these studies, we used the reference implementa-
tions of the aforementioned attacks for the evaluations. It
is, indeed, quite difficult to obtain real-life timing attacks
as these attacks typically leave no trace, except possibly
for some suspicious and hard-to-interpret set of symptoms
in the logs. We could, however, find a family of malware,
called GuLoader, which employs timing-based evasion
checks [17]. More specifically, to figure out whether it
is running in a virtual machine or not, this malware
measures the execution time of the CPUID instruction
by using rdtsc. In a virtualized environment, as this
instruction causes a VM exit, it takes longer time to exe-
cute, compared to executing it directly on real hardware.
Note that, from the perspective of this work, this attack
is still considered to be a timing attack since it uses the
execution time of an operation to exfiltrate information
that is indirectly and unintentionally leaked by the system
under attack. When we, indeed, applied the proposed
approach exactly the way it is described in Section 3 on
this family of malware, we were able to detect it as the
length of the shortest path between two timing readings
was 10.

4.4. Discussion

One countermeasure against the proposed approach
could be to use an implicit timing source, such that
TimeInspector fails to detect the places in the code where
the time measurements are carried out. A number of such
implicit clocks for the web browsers have been introduced
in [20]. Interestingly enough, though, we believe that the
proposed approach could potentially be used to detect the
implementations of certain types of implicit clocks. For
example, one type of an implicit clock aims to recover
the high resolution of a native clock, the resolution of
which is purposefully decreased by the browser to prevent
the timing attacks. These approaches, however, rely on
using the low-resolution clock provided by the browsers
to detect the clock edges. And, this requires the time to
be read repeatedly by, for example, using the browser-
provided performance.now() function, which would
make it suspicious to TimeInspector. To test this conjec-
ture, we implemented the code excerpt given in Listing
A.1 of [20] in C by replacing the performance.now()
calls with rdtsc instructions as our implementation of

the proposed approach currently supports only the Linux
binaries. TimeInspector, indeed, marked the implemen-
tation as suspicious as the length of the shortest path
between two time-reading calls, was 5.

Other types of implicit clocks, rather than depending
on the availability of a native clock, use certain events
that are directly supported by the browsers, e.g., the
onmessage events and the postMessage operations,
as the clock edge signal. And, the interval between two
consecutive events of interest mimics a “clock cycle” [20],
which will be referred to as virtual clock cycles in the
remainder of the document. In each virtual clock cycle,
the value of a counter is incremented, ensuring a mono-
tonically increasing sequence of time readings. Note that,
in order to obtain the highest-possible resolution, which
is typically required by the timing attacks, nothing except
for incrementing a simple counter should be performed
in a virtual clock cycle. Consequently, as long as the
events that are likely to be used to implement the implicit
timing sources are known, the proposed approach could be
adapted by checking whether a suspiciously few number
of instructions are executed between these events. Indeed,
the events of interest used in the reference implementa-
tions given in [20], were all messaging-related events.

One type of implicit timing source, which cannot be
detected by TimeInspector, is counting threads [23], [24],
where a dedicated thread keeps on incrementing a counter,
the values of which are used as time readings. Note,
however, that it could be possible to develop specialized
static analyzers to detect the presence of such timing
sources by checking for code segments that do nothing,
but increment a counter value in a loop.

Another countermeasure against the proposed ap-
proach could be to add no-op (NOP) operations, such
that the number of instructions between the readings is
increased (eventually to a point above the cutoff value)
without affecting the actual time measurements. However,
this countermeasure could be addressed by filtering out the
NOP (or similar) operations (to the extent to which the
identification of these operations are possible in a static
analysis) before the path lengths are computed.

A similar countermeasure is to add redundant instruc-
tions in between the time readings, the execution times of
which can be predicted, so that they can be subtracted
from the actual measurements. However, in [12], we
demonstrated that using this approach to stay stealthier
introduces noise into the measurements, which, in turn,
makes it more difficult (if not impossible) for the attacker
to carry out the attack. More specifically, we kept on
adding an increasing number of redundant operations in
the time measurements made by the Meltdown attack [12].
We observed that the more redundant instructions added,
the less successful the attack typically became [12]. And,
after adding a certain number of redundant operations,
the attack was rendered useless, i.e., exfiltrating 0 byte of
information. We believe that this is because as the number
of instructions executed in between two consecutive time
readings increase, the noise in the measurements tends to
increase. For example, in the cache-based timing attacks,
the more time spent for the measurements the more likely
it is for the cache lines evicted by other processes. Or,
the more it takes for the instructions to execute, the
more likely it becomes for the respective processes to be

scheduled out by the operating system in the middle of a
measurement. Clearly, making more measurements could
help statistically factor out the noise [25]. This, however,
would certainly make the attacks more difficult to carry
out as the experiments need to be repeated, which could,
in turn, also make it easier for the runtime approaches to
detect the suspicious activities. After all, the cutoff hyper-
parameter of the proposed approach can be increased to
address this countermeasure at the cost of a potentially
increased false positive rate.

Another countermeasure is to use obfuscated binaries.
However, in the case of sensitive time measurements,
which are the main concern of this work, the obfuscation
needs to be carried in a carefully-considered manner not
to introduce excessive noise in the measurements, e.g.,
excessive number of redundant instructions in between the
time readings. After all, we always identify the short paths
between the readings.

A related countermeasure is to use packed binaries. As
is the case with all the similar static analysis approaches,
the proposed approach assumes that the instructions in
the binaries can be analyzed. If this is not possible, as
is the case in the packed binaries, where certain subsets
of the instructions to be executed are compressed and/or
encrypted, then the static analysis approaches will cer-
tainly suffer. From this perspective, the proposed approach
is no exception. Therefore, the proposed approach, as a
static analysis approach, is complementary to the dynamic
analysis approaches developed for detecting the timing
attacks at runtime [12], [13], [26]–[28].

5. Related Work

A variety of static analysis approaches have been
proposed in the literature to analyze and mitigate timing-
based side-channel attacks [12], [29]–[33]. Doychev et
al. present an approach, which analyze program binaries
to derive quantitative upper bounds on the amount of
information leaked through a number of timing-based and
other side-channels due to the program interactions with
cache memory [34]. Qin et al. reveal that timing channels
could emerge during just-in-time (JIT) compilation of
sensitive program segments and present a static analysis
approach to generate safe JIT compilation policies [35].
Barthe et al. point out that constant-time implementations
of cryptographic routines within the scope of high-level
programming languages could provide resilience to timing
channels [36]. However, compilation itself could generate
unsafe machine code prone to timing exploitations. To this
end, they present an approach, which turns an existing
compiler into a formally-verified secure compiler against
such issues. Jancar et al. [37] conducted a survey on
why many mainstream cryptography libraries are found
to be vulnerable to timing attacks despite being developed
with constant-time implementation principles. The authors
found that developers are aware of timing attacks and
often implement constant-time code, but there are short-
comings in the criterion, tests, and formal models used to
evaluate these implementations. To this end, the authors
propose a set of serious recommendations to improve
current practices in this area. Cauligi et al. [38] discuss the
importance of compiler- and verification-tools to defend
against Spectre attacks, which require reasoning about

microarchitectural timing details. Despite existing formal
foundations and security guarantees, the authors argue that
more work is needed. They systematize current knowl-
edge about software verification and mitigation within
this context and propose a framework to study security
properties. Furthermore, they outline the foundations upon
which a security assessment framework should be built.
Skorsten et al. present a secure compilation approach for
safeguarding the programs against the attacks on program
states and control flows [39]. Specialized domain specific
languages (DSLs) have also been proposed to implement
constant-time cryptographic primitives, guaranteeing the
safety against the timing exploitations even within the
context of speculative execution [40], [41]. Vassena et al.
present an approach to harden programs that are prone
to timing exploitation under speculative execution, by
detecting vulnerable data flows and patching them with
fence-based calls [42]. Wu et al. present an approach
to eliminate timing channels from the source code of a
given program through static program repair and trans-
formation [43]. Furthermore, Atici et al. combine static
and dynamic analysis to identify the root causes of the
information leakage in software systems [44]. Our work is
different than these existing approaches in that we identify
malicious binaries by developing a novel static analysis
approach. The aforementioned approaches, on the other
hand, aim to harden the benign binaries by analyzing and
mitigating timing-based side-channels.

From this perspective, Irazoqui et al.’s work is, per-
haps, the closest work to ours. They present Mascat [45]
framework, which at its core utilizes the presence of
certain instruction features, which are characteristic to
known microarchitecture attacks including timing attacks.
The features span across from the presence of certain
special instructions to specific instruction patterns, such
as whether a cache line is being flushed inside a loop
performing the measurements. Depending on the presence
of these features, an overall weighted score is calculated,
ranking a binary on a scale of guaranteed attack to per-
fectly benign. TimeInspector, however, follows an orthog-
onal approach. More specifically, rather than looking for
the presence of certain instructions, which can be avoided
to remain stealthier, TimeInspector counts the smallest
number of instructions to be executed between two time
readings, regardless of what these instructions are, with
the goal of detecting the timing attacks that operate by
measuring the execution times of short running operations.

Dynamic program analysis-based approaches to com-
bat timing attacks have also been under active research.
Crane et al. rely on control-flow diversity to offer prob-
abilistic protection [46]. Their approach systematically
generates a large number of semantically equivalent but
unique execution paths at runtime and frequently switches
among these paths to leave a unique execution trace each
time. Rane et al. adopt a similar approach, but leverage
obfuscation in control flows to perturb branch outcomes as
a defense mechanism [47]. Hunt et al. adopt a hardware-
enclave based sandboxing approach to carry out the exe-
cutions of sensitive programs in a distributed manner with
the goal of minimizing the effectiveness of the timing
attacks [48]. Brasser et al. demonstrate frequent location-
randomization as an effective defense mechanism, which
obfuscates the locality of data against the adversaries

utilizing the timing channels [49]. Using neural networks
to discover and quantify the information leakage through
timing channels has also been explored [50], [51]. Em-
ployment of program fuzzing techniques to discover po-
tential timing vulnerabilities hidden in programs have also
received considerable attention [52], [53].

One particular, but focused aspect among dynamic
analysis-based approaches is runtime detection, isolation,
and prevention of microarchitecture-related timing attacks.
In this regard, Akyildiz et al. [26] rely on runtime monitor-
ing of segmentation faults occurring at memory addresses
that are close to each other to solemnly countermeasure
an ongoing Meltdown attack [11]. Kulah et al. monitor
the contentions in L1 cache memory and emit warnings
about the presence of potential cache-based timing attacks
when the contentions arrive at a suspicious level [27]. In a
similar fashion, Chiappetta et al. monitor the contentions
in L3 cache memory to detect the patterns demonstrated
by known attacks or similar types of cache-based tim-
ing attacks to raise alarm upon detecting an ongoing
attack [28]. Our work is different than these dynamic
analysis approaches as TimeInspector is a static analysis
approach. From this perspective, TimeInspector serves in
complimentary fashion to its dynamic contemporaries.

Unlike compiled malicious binaries, an attacker can
mount remote attacks through embedding malicious
JavaScript (JS) code on a web page. Timing attacks
carrying out microarchitecture attacks in JS are fairly-
recent. Although, browser vendors followed mitigation
such as limiting the resolution of timing-APIs however,
subsequent research revealed a number of alternative ways
to either circumvent aforementioned low-resolutions, or a
craft implicit timers of ample resolution to mount tim-
ing attacks. To this end, Schwarz et al. [20] presented
a number of practical approaches to craft such implicit
timers meant for JS attacks. In contrast, Rockici et al. [54]
systematize and present efforts which could mitigate and
aid to develop effective countermeasure against aforemen-
tioned implicit timers. Our presented work is exclusively
focused on compiled binaries which employ explicit time
measurement routines. However, as we discussed in Sec-
tion 4.4, we do not neglect a future extension of our
presented approach tailored for implicit timer attacks.

6. Concluding Remarks

In this work, we have presented a novel static analysis
approach to detect malicious binaries that are capable of
carrying out a timing attack. To this end, we construct
the CFG of a given binary and identify the paths between
the pairs of time readings, on which a suspiciously low
number of instructions might be executed. In the presence
of such a path, we mark the binary as potentially mali-
cious. The proposed approach, being a static analysis, is
complementary to the dynamic analysis approaches that
aim to detect, isolate, and prevent timing attacks [12],
[13], [26]–[28]. One potential avenue for future research
is to develop hybrid approaches where the results of the
static analysis are used to determine the parts of the exe-
cutions to be focused on at runtime to further reduce the
runtime overheads while increasing the detection accuracy.
Another avenue is to adapt the proposed approach to
detect the presence of implicit timing sources.

References

[1] S. Zander, G. Armitage, and P. Branch, “A survey of covert
channels and countermeasures in computer network protocols,”
IEEE Communications Surveys & Tutorials, vol. 9, no. 3, pp. 44–
57, 2007.

[2] J. Szefer, “Survey of microarchitectural side and covert channels,
attacks, and defenses,” Journal of Hardware and Systems Security,
vol. 3, no. 3, pp. 219–234, 2019.

[3] J. Betz, D. Westhoff, and G. Müller, “Survey on covert channels in
virtual machines and cloud computing,” Transactions on Emerging
Telecommunications Technologies, vol. 28, no. 6, p. e3134, 2017.

[4] D. J. Bernstein, “Cache-timing attacks on aes,” 2005.

[5] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of aes,” in Cryptographers’ track at the
RSA conference. Springer, 2006, pp. 1–20.

[6] C. Percival, “Cache missing for fun and profit,” 2005.

[7] P. C. Kocher, “Timing attacks on implementations of diffie-
hellman, rsa, dss, and other systems,” in Annual International
Cryptology Conference. Springer, 1996, pp. 104–113.

[8] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush:
A fast and stealthy cache attack,” in Detection of Intrusions and
Malware, and Vulnerability Assessment, J. Caballero, U. Zurutuza,
and R. J. Rodrı́guez, Eds. Cham: Springer International Publish-
ing, 2016, pp. 279–299.

[9] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low
noise, l3 cache side-channel attack,” in Proceedings of the 23rd
USENIX Conference on Security Symposium, ser. SEC’14. USA:
USENIX Association, 2014, p. 719–732.

[10] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-level
cache side-channel attacks are practical,” in 2015 IEEE symposium
on security and privacy. IEEE, 2015, pp. 605–622.

[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,”
arXiv preprint arXiv:1801.01207, 2018.

[12] A. Javeed, C. Yilmaz, and E. Savas, “Detector+: An approach for
detecting, isolating, and preventing timing attacks,” Computers &
Security, vol. 110, 2021.

[13] M. S. Unal, A. Javeed, C. Yilmaz, and E. Savas, “Hyperdetector:
Detecting, isolating, and mitigating timing attacks in virtualized
environments,” in International Conference on Cryptology and
Network Security. Springer, 2022, pp. 188–199.

[14] A. Shusterman, A. Agarwal, S. O’Connell, D. Genkin, Y. Oren, and
Y. Yarom, “Prime+ probe 1, javascript 0: Overcoming browser-
based side-channel defenses.” https://www. usenix. org/confer-
ence/usenixsecurity21/presentation/shusterman, 2021.

[15] J. Cook, J. Drean, J. Behrens, and M. Yan, “There’s always a bigger
fish: a clarifying analysis of a machine-learning-assisted side-
channel attack,” in Proceedings of the 49th Annual International
Symposium on Computer Architecture, 2022, pp. 204–217.

[16] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:
Automating attacks on inclusive {Last-Level} caches,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp.
897–912.

[17] J. Security, “Guloader’s vm-exit instruction hammering
explained,” Accessed: 4 May 2023. [Online]. Available:
https://www.joesecurity.org/blog/3535317197858305930

[18] B. B. Brumley and N. Tuveri, “Remote timing attacks are still
practical,” in Computer Security–ESORICS 2011: 16th European
Symposium on Research in Computer Security, Leuven, Belgium,
September 12-14, 2011. Proceedings 16. Springer, 2011, pp. 355–
371.

[19] T. Van Goethem, W. Joosen, and N. Nikiforakis, “The clock is still
ticking: Timing attacks in the modern web,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communications
Security, 2015, pp. 1382–1393.

[20] M. Schwarz, C. Maurice, D. Gruss, and S. Mangard, “Fantastic
timers and where to find them: High-resolution microarchitectural
attacks in javascript,” in Financial Cryptography and Data Secu-
rity: 21st International Conference, FC 2017, Sliema, Malta, April
3-7, 2017, Revised Selected Papers 21. Springer, 2017, pp. 247–
267.

[21] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+ flush: a
fast and stealthy cache attack,” in International Conference on De-
tection of Intrusions and Malware, and Vulnerability Assessment.
Springer, 2016, pp. 279–299.

[22] T. L. D. Project, ldd(1) — Linux manual page, The
Linux Documentation Project, 2021. [Online]. Available:
https://man7.org/linux/man-pages/man1/ldd.1.html

[23] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Ar-
mageddon: Cache attacks on mobile devices.” in USENIX Security
Symposium, 2016, pp. 549–564.

[24] J. C. Wray, “An analysis of covert timing channels,” Journal of
Computer Security, vol. 1, no. 3-4, pp. 219–232, 1992.

[25] E. Ronen, K. G. Paterson, and A. Shamir, “Pseudo constant time
implementations of tls are only pseudo secure,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communi-
cations Security, 2018, pp. 1397–1414.

[26] T. A. Akyildiz, C. B. Guzgeren, C. Yilmaz, and E. Savas, “Melt-
downdetector: A runtime approach for detecting meltdown attacks,”
Future Generation Computer Systems, vol. 112, pp. 136–147, 2020.

[27] Y. Kulah, B. Dincer, C. Yilmaz, and E. Savas, “Spydetector: An
approach for detecting side-channel attacks at runtime,” Int. J. Inf.
Secur., vol. 18, no. 4, p. 393–422, aug 2019. [Online]. Available:
https://doi.org/10.1007/s10207-018-0411-7

[28] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection
of cache-based side-channel attacks using hardware performance
counters,” Applied Soft Computing, vol. 49, pp. 1162–1174, 2016.

[29] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile
devices,” IEEE Communications Surveys & Tutorials, vol. 20,
no. 1, pp. 465–488, 2017.

[30] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microar-
chitectural timing attacks and countermeasures on contemporary
hardware,” Journal of Cryptographic Engineering, vol. 8, no. 1,
pp. 1–27, 2018.

[31] A. K. Biswas, D. Ghosal, and S. Nagaraja, “A survey of timing
channels and countermeasures,” ACM Computing Surveys (CSUR),
vol. 50, no. 1, pp. 1–39, 2017.

[32] Q. Zhang, H. Gong, X. Zhang, C. Liang, and Y.-a. Tan, “A sensitive
network jitter measurement for covert timing channels over inter-
active traffic,” Multimedia Tools and Applications, vol. 78, no. 3,
pp. 3493–3509, 2019.

[33] M. K. Qureshi, “New attacks and defense for encrypted-address
cache,” in 2019 ACM/IEEE 46th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2019, pp. 360–371.

[34] G. Doychev, B. Köpf, L. Mauborgne, and J. Reineke, “Cacheaudit:
A tool for the static analysis of cache side channels,” ACM Transac-
tions on information and system security (TISSEC), vol. 18, no. 1,
pp. 1–32, 2015.

[35] Q. Qin, J. Jiyang, F. song, T. Chen, and X. Xing, “Dejitleak:
Eliminating jit-induced timing side-channel leaks,” in ESEC/FSE
’22: 30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, Sin-
gapore, Singapore, November 14-18, 2022, 2022.

[36] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte,
D. Pichardie, and A. Trieu, “Formal verification of a constant-time
preserving c compiler,” Proceedings of the ACM on Programming
Languages, vol. 4, no. POPL, pp. 1–30, 2020.

[37] J. Jancar, M. Fourné, D. D. A. Braga, M. Sabt, P. Schwabe,
G. Barthe, P.-A. Fouque, and Y. Acar, ““they’re not that hard
to mitigate”: What cryptographic library developers think about
timing attacks,” in 2022 IEEE Symposium on Security and Privacy
(SP), May 2022, p. 632–649.

[38] S. Cauligi, C. Disselkoen, D. Moghimi, G. Barthe, and D. Stefan,
“Sok: Practical foundations for software spectre defenses,” in 2022
IEEE Symposium on Security and Privacy (SP), May 2022, p.
666–680.

[39] L. Skorstengaard, D. Devriese, and L. Birkedal, “Stktokens: en-
forcing well-bracketed control flow and stack encapsulation using
linear capabilities,” Proceedings of the ACM on Programming
Languages, vol. 3, no. POPL, pp. 1–28, 2019.

[40] S. Cauligi, C. Disselkoen, K. v. Gleissenthall, D. Tullsen, D. Stefan,
T. Rezk, and G. Barthe, “Constant-time foundations for the new
spectre era,” in Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2020, pp.
913–926.

[41] S. Cauligi, G. Soeller, B. Johannesmeyer, F. Brown, R. S. Wahby,
J. Renner, B. Grégoire, G. Barthe, R. Jhala, and D. Stefan, “Fact:
A dsl for timing-sensitive computation.” New York, NY, USA:
Association for Computing Machinery, 2019. [Online]. Available:
https://doi.org/10.1145/3314221.3314605

[42] M. Vassena, C. Disselkoen, K. V. Gleissenthall, S. Cauligi, R. G.
Kici, R. Jhala, D. Tullsen, and D. Stefan, “Automatically eliminat-
ing speculative leaks from cryptographic code with blade,” arXiv
preprint arXiv:2005.00294, 2020.

[43] M. Wu, S. Guo, P. Schaumont, and C. Wang, “Eliminating timing
side-channel leaks using program repair,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis, 2018, pp. 15–26.

[44] A. Atıcı, C. Yilmaz, and E. Savas, “An approach for isolating
the sources of information leakage exploited in cache-based side-
channel attacks,” 06 2013, pp. 74–83.

[45] G. Irazoqui, T. Eisenbarth, and B. Sunar, “Mascat: Stopping
microarchitectural attacks before execution,” Cryptology ePrint
Archive, 2016.

[46] S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz,
“Thwarting cache side-channel attacks through dynamic software
diversity.” in NDSS, 2015, pp. 8–11.

[47] A. Rane, C. Lin, and M. Tiwari, “Raccoon: Closing digital {Side-
Channels} through obfuscated execution,” in 24th USENIX Secu-
rity Symposium (USENIX Security 15), 2015, pp. 431–446.

[48] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan: A
distributed sandbox for untrusted computation on secret data,” ACM
Transactions on Computer Systems (TOCS), vol. 35, no. 4, pp. 1–
32, 2018.

[49] F. Brasser, S. Capkun, A. Dmitrienko, T. Frassetto, K. Kostiainen,
and A.-R. Sadeghi, “Dr. sgx: Automated and adjustable side-
channel protection for sgx using data location randomization,” in
Proceedings of the 35th Annual Computer Security Applications
Conference, 2019, pp. 788–800.

[50] S. Tizpaz-Niari, P. Černỳ, S. Sankaranarayanan, and A. Trivedi,
“Efficient detection and quantification of timing leaks with neural
networks,” in International Conference on Runtime Verification.
Springer, 2019, pp. 329–348.

[51] D. She, R. Krishna, L. Yan, S. Jana, and B. Ray, “Mtfuzz: fuzzing
with a multi-task neural network,” in Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, 2020, pp.
737–749.

[52] S. Nilizadeh, Y. Noller, and C. S. Pasareanu, “Diffuzz: differen-
tial fuzzing for side-channel analysis,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering (ICSE). IEEE,
2019, pp. 176–187.

[53] R. Padhye, C. Lemieux, K. Sen, L. Simon, and H. Vijayakumar,
“Fuzzfactory: domain-specific fuzzing with waypoints,” Proceed-
ings of the ACM on Programming Languages, vol. 3, no. OOPSLA,
pp. 1–29, 2019.

[54] T. Rokicki, C. Maurice, and P. Laperdrix, “Sok: In search of lost
time: A review of javascript timers in browsers,” in 2021 IEEE
European Symposium on Security and Privacy (EuroSP), Sep 2021,
p. 472–486.

Appendix

endbr64
mov rcx, rdi ; arg1
mfence
rdtsc
shl rdx, 0x20 ; arg3
or rdx, rax ; arg3
mov r8, rdx ; arg3
mfence
clflush byte [rcx]
mfence
rdtsc
mfence
shl rdx, 0x20 ; arg3
or rdx, rax ; arg3
sub rdx, r8 ; arg3
lea rax, [rdx - 0xac] ; arg3
cmp rax, 0x1c
ja 0x1470
mov rcx, qword [kpause]
cmp rcx, 0x3e8 ; 1000
ja 0x1480

mov rcx, qword [kpause]
cmp rcx, 0x3e8 ; 1000
ja 0x1480

add qword [kpause], 1
ret

A

B C

entry

exit

....

(a) Original CFG

mov rcx, qword [kpause]
cmp rcx, 0x3e8 ; 1000
ja 0x1480

add qword [kpause], 1
ret

endbr64
mov rcx, rdi ; arg1
mfence

rdtsc

shl rdx, 0x20 ; arg3
or rdx, rax ; arg3
mov r8, rdx ; arg3
mfence
clflush byte [rcx]
mfence

rdtsc

mfence
shl rdx, 0x20 ; arg3
or rdx, rax ; arg3
sub rdx, r8 ; arg3
lea rax, [rdx - 0xac] ; arg3
cmp rax, 0x1c
ja 0x1470
mov rcx, qword [kpause]
cmp rcx, 0x3e8 ; 1000
ja 0x1480

A1

B C

A2

A3

A4

A5

entry

exit

....

(b) Modified CFG

Figure A.1: Example control flow graphs (CFGs).

