
Virtualization-assisted Operating System Security

Workshop on Security of Software/Hardware Interfaces
SILM

Sergej Proskurin

3rd of July 2023

whoami

▸ Graduated at the Technical University of Munich

▸ In the past, I have contributed to:
▸ Xen Project hypervisor
▸ Honeynet Project
▸ Binary Analysis System DRAKVUF

▸ Today, Senior Security Engineer @ BedRock Systems

▸ Generally interested in:
▸ Virtualization Technology
▸ Virtualization-assisted Operating System Security
▸ Virtual Machine Introspection
▸ Operating System design & security

Disclaimer

I do not speak for my employer.
All opinions and information conveyed today are my personal views.

Virtualization-assisted primitives for
dynamic binary analysis and OS security

Key hypothesis: we can repurpose HW-assisted virtualization extensions
to introduce new primitives for:

Virtualization-assisted primitives for
dynamic binary analysis and OS security

Key hypothesis: we can repurpose HW-assisted virtualization extensions
to introduce new primitives for:

i facilitating stealthy analysis, despite potentially
missing hardware capabilities

ii strengthening the isolation capabilities of
modern OSes to enhance security

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Dom0 DomU

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

User Space

Process

System Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

Organizational Structure

i On-demand deployment of
virtualization-assisted frameworks

ii Primitives for stealthy malware
analysis on Arm

iii Virtualization-assisted memory
protection primitives

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Dom0Dom0 DomUDomU

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call InterfaceHyper Call Interface

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

User Space

Process

System Call Interface

S
ys

te
m

M
od

e

K
er

ne
lM

od
e

U
se

rM
od

e

S. Proskurin SILM 2023 6

Organizational Structure

i On-demand deployment of
virtualization-assisted frameworks

ii Primitives for stealthy malware
analysis on Arm

iii Virtualization-assisted memory
protection primitives

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Dom0

Dom0

DomU

DomU

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Hyper Call Interface

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

User Space

Process

System Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin SILM 2023 6

Organizational Structure

i On-demand deployment of
virtualization-assisted frameworks

ii Primitives for stealthy malware
analysis on Arm

iii Virtualization-assisted memory
protection primitives
▸ In kernel space

▸ In user space

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Dom0

Dom0

DomU

DomU

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Hyper Call Interface

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

User Space

Process

System Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin SILM 2023 6

Organizational Structure

i On-demand deployment of
virtualization-assisted frameworks

ii Primitives for stealthy malware
analysis on Arm

iii Virtualization-assisted memory
protection primitives
▸ In kernel space
▸ In user space

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Dom0

Dom0

DomU

DomU

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Hyper Call Interface

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

User Space

Process

System Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin SILM 2023 6

Part I
On-demand Deployment of Virtualization-assisted Frameworks

On-demand Virtualization
Motivation

To support system virtualization a VMM must be set up in advance
▸ Limited popularity of virtualization-assisted security frameworks

in non-cloud environments

Observation: No need for a fully-fledged COTS VMM
▸ OSes can ship their own minimalistic VMMs in form of a kernel subsystem
▸ Deploy VMMs on-demand

Various solutions available:
▸ Bareflank hypervisor, SimpleVisor, BluePill rootkit, etc.
→ Our solution: WhiteRabbit virtualization-assisted security framework

S. Proskurin SILM 2023 8

WhiteRabbit VMM
On-the-Fly Virtualization

Hardware (x86)

WhiteRabbit

VM0

OS

Applications

ri
ng

0
ri

ng
3

Mem MgtVMII/O

ri
ng

0
ri

ng
3

VM
X

ro
ot

VM
X

no
n-

ro
ot

WhiteRabbit moves a running Linux OS into a virtual environment on Intel and Arm
▸ Loaded as kernel module

▸ Inspired by the Blue Pill rootkit

▸ Microkernel architecture designed for on-the-fly virtualization
▸ Only essential functionality in kernel space
▸ Private subsystems placed in user space

S. Proskurin SILM 2023 9

WhiteRabbit VMM
Module Relocation & Isolation

Host-virtual
address space

Guest-virtual
address space

module’ module

Host’s 1st level
address translation

Machine-physical
address space

Guest’s 2nd level
address translation

Guest’s 1st level
address translation

GVAHVA

GPA

MPA

MPA

WhiteRabbit has to be aware of split-personality malware

▸ WhiteRabbit removes in-guest artifacts and hides in memory
▸ Relocates its own code and data segments
▸ Maps module’ and module to the same virtual address space (guest and host)
▸ Initiates a clean module destruction inside of the guest OS

S. Proskurin SILM 2023 10

Part II
Virtual Machine Introspection

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0 VM1

VM1

Interposition

Isolation

Inspection

StealthInterposition

Isolation Inspection

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1

VM1

Interposition

Isolation

Inspection

StealthInterposition

Isolation

Inspection

20 00 00 00 00 00 00 00
FF FF FF FF FF FF 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 80 54 0C 00 00 FF FF
02 00 00 00 00 01 40 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
01 00 00 00 01 00 00 00
10 00 00 00 00 00 00 00
BA EC FE FF 00 00 00 00
80 CF 66 28 00 80 FF FF

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1

VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection

20 00 00 00 00 00 00 00
FF FF FF FF FF FF 00 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
00 80 54 0C 00 00 FF FF
02 00 00 00 00 01 40 00
00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00
01 00 00 00 01 00 00 00
10 00 00 00 00 00 00 00
BA EC FE FF 00 00 00 00
80 CF 66 28 00 80 FF FF

thread_info

state
stack
usage
...

task_struct

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1

VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection

User Space:

Kernel Space:

[...]
mov rax, 0x1
syscall

__x64_sys_read:
mov rdx, [rdi+0x60]
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jump <ksys_read>

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1

VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection
[...]
mov rax, 0x1
syscall

__x64_sys_read:
int3
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jump <ksys_read>

User Space:

Kernel Space:

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1

VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection
[...]
mov rax, 0x1
syscall

__x64_sys_read:
int3
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jump <ksys_read>

User Space:

Kernel Space:

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1

VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection
[...]
mov rax, 0x1
syscall

__x64_sys_read:
int3
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jump <ksys_read>

User Space:

Kernel Space:

S. Proskurin SILM 2023 12

Virtual Machine Introspection
Recap

GPA to MPA
2nd level address translation

VMM

Machine-physical addresses (MPA)

VM0

VM1

VM1

Interposition

Isolation Inspection

StealthInterposition

Isolation Inspection
[...]
mov rax, 0x1
syscall

__x64_sys_read:
mov rdx, [rdi+0x60]
mov rsi, [rdi+0x68]
mov rdi, [rdi+0x70]
jump <ksys_read>

User Space:

Kernel Space:

S. Proskurin SILM 2023 12

The Need for Stealthy Monitoring
Motivation

Split-personality malware
▸ Employ anti-virtualization to reveal a VMM (red pills)

Perfect VM transparency is not feasible
▸ Insufficient to reveal virtual environment alone!

More interesting to know whether the system is being analyzed
▸ Hide analysis artifacts from the guest

S. Proskurin SILM 2023 13

Requirements for Stealthy Monitoring

❶ Intercept the guest in kernel space

❷ A stealthy single-stepping mechanism

❸ Execute-only memory

S. Proskurin SILM 2023 14

Req. 1: Implementing Kernel Tap Points

Instruction of Choice: Secure Monitor Call (SMC)

▸ Guest is not able to subscribe to SMC traps
▸ SMCs do not have to be re-injected into the guest
▸ Can only be executed in the guest’s kernel

Issues: How to remain stealthy and in control?
� Removing tap points introduces race conditions
� No hardware support for stealthy single-stepping

User Space:

Kernel Space:

[...]
mov x8, #0x3f
svc #0x0

SyS_read:
stp x29, x30, [sp, #−64]
mov x29, sp
stp x21, x22, [sp, #32]
[...]

S. Proskurin SILM 2023 15

Req. 1: Implementing Kernel Tap Points

Instruction of Choice: Secure Monitor Call (SMC)

▸ Guest is not able to subscribe to SMC traps
▸ SMCs do not have to be re-injected into the guest
▸ Can only be executed in the guest’s kernel

Issues: How to remain stealthy and in control?
� Removing tap points introduces race conditions
� No hardware support for stealthy single-stepping

User Space:

Kernel Space:

[...]
mov x8, #0x3f
svc #0x0

SyS_read:
smc 0x0
mov x29, sp
stp x21, x22, [sp, #32]
[...]

S. Proskurin SILM 2023 15

Req. 1: Implementing Kernel Tap Points

Instruction of Choice: Secure Monitor Call (SMC)

▸ Guest is not able to subscribe to SMC traps
▸ SMCs do not have to be re-injected into the guest
▸ Can only be executed in the guest’s kernel

Issues: How to remain stealthy and in control?
� Removing tap points introduces race conditions
� No hardware support for stealthy single-stepping

User Space:

Kernel Space:

[...]
mov x8, #0x3f
svc #0x0

SyS_read:
smc 0x0
mov x29, sp
stp x21, x22, [sp, #32]
[...]

S. Proskurin SILM 2023 15

Req. 2: Stealthy Single-Stepping
The Xen altp2m Subsystem on Arm

Guest-physical
memory

Original View

Guest-physical
memory

2nd level
address translation

Machine-physical
memory

2nd level
address translation

(--x)

(rwx)
GPA MPA

Typically, a VMM uses one set of second level address translation tables (SLAT)
▸ Defines the guest’s global view on the physical memory

→ Changes in the global view are perceived by all vCPUs

S. Proskurin SILM 2023 16

Req. 2: Stealthy Single-Stepping
The Xen altp2m Subsystem on Arm

Guest-physical
memory

Original View

Guest-physical
memory

Execute View

2nd level
address translation

Machine-physical
memory

2nd level
address translation

(--x)(rwx)
GPAGPA MPA MPA

Implement Xen alternate p2m (altp2m) subsystem for Arm
▸ Maintains different views on the guest’s physical memory
▸ Allocates and assigns different memory views to vCPUs

→ Switch views instead of relaxing permissions in a global view!

S. Proskurin SILM 2023 16

Req. 2: Stealthy Single-Stepping
The Xen altp2m Subsystem on Arm

Guest-physical
memory

Original View

Guest-physical
memory

Execute View

2nd level
address translation

Machine-physical
memory

2nd level
address translation

(r-x)(r--)
GPAGPA MPA MPA

MFN
(original)

MFN
(shadow)

Implement Xen alternate p2m (altp2m) subsystem for Arm
▸ Allows to remap same guest-physical to different machine-physical page frames

→ Facilitates race-free SMC injections in selected views

S. Proskurin SILM 2023 16

Req. 2: Stealthy Single-Stepping
Race-free Single-Stepping Scheme

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

SMC
Instr 2
Instr 3

...

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Instr 1
SMC

Instr 3
...

Guest-physical memory

GFN
Machine-physical memory

MFN1 MFN2

S. Proskurin SILM 2023 17

Req. 2: Stealthy Single-Stepping
Race-free Single-Stepping Scheme

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

SMC

Instr 2
Instr 3

...

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Instr 1
SMC

Instr 3
...

Guest-physical memory

GFN
Machine-physical memory

MFN1 MFN2

S. Proskurin SILM 2023 17

Req. 2: Stealthy Single-Stepping
Race-free Single-Stepping Scheme

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

SMC
Instr 2
Instr 3

...

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Instr 1

SMC
Instr 3

...

Guest-physical memory

GFN
Machine-physical memory

MFN1 MFN2

S. Proskurin SILM 2023 17

Req. 2: Stealthy Single-Stepping
Race-free Single-Stepping Scheme

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

SMC
Instr 2
Instr 3

...

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Instr 1

SMC

Instr 3
...

Guest-physical memory

GFN
Machine-physical memory

MFN1 MFN2

S. Proskurin SILM 2023 17

Req. 2: Stealthy Single-Stepping
Race-free Single-Stepping Scheme

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

Execute View
(--x)

GFN↔ MFN1
Shadow Copy’

VMID’

SMC

Instr 2

Instr 3
...

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Step View
(--x)

GFN↔ MFN2
Shadow Copy”

VMID”

Instr 1
SMC

Instr 3
...

Guest-physical memory

GFN
Machine-physical memory

MFN1 MFN2

S. Proskurin SILM 2023 17

Req. 3: Execute-only Memory on AArch64
Stealthy Single-Stepping Scheme

Putting everything together (on AArch64)
▸ Allocate two additional views:

Execute View and Step View

▸ Duplicate the original page twice
▸ Replace Instr 1 with SMC in Shadow Copy’
▸ Replace Instr 2 with SMC in Shadow Copy”

▸ Map both duplicates as execute-only

On read-requests, switch to the Original View
▸ Satisfies integrity checks

Original View
(r--)

GFN↔ MFN1
Original Page

VMID’

Instr 1
Instr 2
Instr 3

...

Execute View
(--x)

GFN↔ MFN2
Shadow Copy’

VMID”

SMC
Instr 2
Instr 3

...

Step View
(--x)

GFN↔ MFN3
Shadow Copy”

VMID”’

Instr 1
SMC

Instr 3
...

Guest-physical memory

GFN
Machine-physical memory

MFN1 MFN2 MFN3

S. Proskurin SILM 2023 18

Pitfalls of Virtual Machine Introspection
High Potential & High Maintenance

VMI is a custom-tailored suit/Kevlar vest

▸ Dependencies on the OS:
▸ Bind the VMI tools to (an existing) OS kernel
▸ Self-patching, race conditions with multi-vCPUs, etc.
▸ Licensing questions

▸ Dependencies on the compiler:
▸ Optimizations, function inlining, etc.
▸ How to generate reliable OS profiles?

▸ Dependencies on the OS profile:
▸ Incomplete and fragile profile generation
▸ How to verify that a profile fits the OS?

S. Proskurin SILM 2023 19

Pitfalls of Virtual Machine Introspection
High Potential & High Maintenance

VMI is a custom-tailored suit/Kevlar vest

▸ Performance overhead:
▸ VMI tools tend to “over-subscribe” to events
▸ Irrelevant events must be injected into the guest

S. Proskurin SILM 2023 19

Virtual Machine Introspection
Key Takeaways

VMI shows great potential (for analysis and defense)

▸ Analyze and manipulate the state of guest OSes from the outside
▸ Compromised VMs cannot easily manipulate or delude security tools

VMI has its place, e.g., in sandboxing/analysis environments

▸ Controlled environments simplify maintaining fragile profiles
▸ Performance is not a hard requirement
▸ The value of the stealth property receives the highest priority

S. Proskurin SILM 2023 20

Part III
Virtualization-assisted OS Security

Virtualization-assisted OS Security
Motivation & Background

Problem: (Bounded) Hierarchical Privilege Separation

The OS kernel is responsible for:
▸ Protecting and isolating applications in user space
▸ Protecting itself from unauthorized accesses

ring 0

ring 1

ring 2

ring 3

Increasing
privileges

Who protects the OS kernel from malicious entities
with same privileges?

S. Proskurin SILM 2023 22

Virtualization-assisted OS Security
Motivation & Background

Design the OS kernel with virtualization-assisted security in mind

▸ Alleviate the strict separation between the OS and a VMM
▸ Leverage virtualization extensions for defense purposes
▸ Deploy a thin VMM in form of an OS subsystem

(or retrospectively on-demand)

▸ Equip the OS subsystems with security primitives offered by the VMM
▸ Partition memory and subsystems into individual security domains
▸ Define flexible security policies as part of the OS
▸ No need to fully export security services to the VMM

▸ Leverage a small and well-tested, or (ideally) a formally verified VMM
▸ Leave the security of the highest privilege level to math!

S. Proskurin SILM 2023 23

Selective Memory Protection (xMP)
xMP in a Nutshell

Leverage virtualization extensions to define xMP domains in kernel and user space

1. Partition selected memory regions into isolated xMP domains
2. Empower Linux to enforce fine-grained memory permissions in xMP domains
3. Protect the integrity of pointers to xMP domains

→ Utilize Xen altp2m to establish efficient xMP domains

S. Proskurin SILM 2023 24

xMP Primitives
1: Partition Memory into xMP Domains

Restricted View xMP domain[1] xMP domain[n]

(---)

(---)

(rwx)

(r-x)

(r-x)

Guest-physical
memory

Machine-physical
memory

Restricted View

(---)

(---)

(rwx)

(--x)

(--x)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

xMP domain[1]

(rw-)

(rw-)

(rwx)

(--x)

(--x)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

Leverage Xen altp2m to configure multiple disjoint xMP domains
▸ Only a single altp2m view can be active at a given time
→ Propagate permissions of each xMP domain across all available altp2m views

S. Proskurin SILM 2023 25

xMP Primitives
1: Partition Memory into xMP Domains

Restricted View xMP domain[1]

xMP domain[n]

(---)

(---)

(rwx)

(r-x)

(r-x)

Guest-physical
memory

Machine-physical
memoryRestricted View

(---)

(---)

(rwx)

(--x)

(--x)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

xMP domain[1]

(rw-)

(rw-)

(rwx)

(--x)

(--x)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

One xMP domain requires 2 altp2m views (restricted and relaxed view)
▸ The restricted view unifies memory restrictions of all xMP domains

▸ Configured as the default view on all vCPUs

S. Proskurin SILM 2023 25

xMP Primitives
1: Partition Memory into xMP Domains

Restricted View xMP domain[1] xMP domain[n]

(---)

(---)

(rwx)

(r-x)

(r-x)

Guest-physical
memory

Machine-physical
memoryRestricted View

(---)

(---)

(rwx)

(--x)

(--x)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

xMP domain[1]

(rw-)

(rw-)

(rwx)

(--x)

(--x)

(rwx)

(rwx)

(rwx)

(rwx)

(rwx)

For n xMP domains, we define n + 1 altp2m views
▸ Each {domain[i] ∣ i ∈ {1, ..., n}}

▸ Relaxes the permissions of sensitive memory in xMP domain i
▸ Restricts access to memory regions belonging to xMP domains ≠ i

S. Proskurin SILM 2023 25

xMP Primitives
2: Empower Linux to Isolate Memory in xMP Domains

Equip Linux with memory isolation primitives
▸ Interface Linux with access to Xen altp2m (hypercalls)
▸ Govern sensitive data in isolated and disjoint xMP domains

Leverage Intel’s fast EPTP switching and Virtualization Exceptions (#VE)
▸ Use the VMFUNC instruction to dynamically switch xMP domains
▸ Illegal accesses trap into the in-kernel #VE handler
▸ No VMM interaction required

S. Proskurin SILM 2023 26

xMP Primitives
3: Context-bound Pointer Integrity

xMP domain[3]
xMP domain[2]

xMP domain[1]

(---)

(---)

(rw-)

(--x)

(--x)

Guest-physical
memory

Machine-physical
memory

xMP domain[1]

PagePagePage

Key

ptr

ptr

context

⊕

context

⊕

Ensure the integrity of pointers to sensitive data within xMP domains

S. Proskurin SILM 2023 27

xMP Primitives
3: Context-bound Pointer Integrity

xMP domain[3]
xMP domain[2]

xMP domain[1]

(---)

(---)

(rw-)

(--x)

(--x)

Guest-physical
memory

Machine-physical
memory

xMP domain[1]

PagePagePage

Key

ptr

ptr

context

⊕

context

⊕

Ensure the integrity of pointers to sensitive data within xMP domains
▸ xMP uses (SipHash-generated) HMACs to authenticate selected pointers

▸ Stores truncated HMAC in bits [48 − 63] of the pointer

S. Proskurin SILM 2023 27

xMP Primitives
3: Context-bound Pointer Integrity

xMP domain[3]
xMP domain[2]

xMP domain[1]

(---)

(---)

(rw-)

(--x)

(--x)

Guest-physical
memory

Machine-physical
memory

xMP domain[1]

PagePagePage

Key

ptr

ptr

context

⊕

context

⊕

Guard read-only keys per xMP domain
▸ Keys can be read only inside the corresponding xMP domains
▸ xMP domains dedicate the same GFN for accessing different keys

▸ Remap the GNF (which holds the key) of each xMP domain to different MFNs

S. Proskurin SILM 2023 27

xMP Primitives
3: Context-bound Pointer Integrity

xMP domain[3]
xMP domain[2]

xMP domain[1]

(---)

(---)

(rw-)

(--x)

(--x)

Guest-physical
memory

Machine-physical
memory

xMP domain[1]

PagePagePage

Key

ptr

ptr

context

⊕

context

⊕

Bind pointers to immutable context
▸ Use context that is unique and immutable (e.g., &task_struct)
▸ Pointer authentication succeeds only in the right context

S. Proskurin SILM 2023 27

Integrating xMP into Linux
Combine Memory Management with Virtualization Extensions

Integrate xMP primitives into the
Linux memory management system
▸ Closely couple memory management with the

capabilities of virtualization extensions

Targeted memory management components
▸ The (zoned) buddy allocator
▸ The slab allocator (kmalloc)

Establish controlled access to:
▸ Page tables
▸ Process credentials

Xen altp2m

2nd level address translation

CPU

I/O

Xen

Machine-physical memory

Dom0

Kernel Space

vCPU
Guest-physical memory

Buddy allocator

Slab allocator

#VE

xMP domain[1]

SlabSlabSlab

xMP domain[2]

PagePagePage

xMP domain[3]

PagePagePage

User Space

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin SILM 2023 28

Integrating xMP into Linux
Combine Memory Management with Virtualization Extensions

Integrate xMP primitives into the
Linux memory management system
▸ Closely couple memory management with the

capabilities of virtualization extensions

Targeted memory management components
▸ The (zoned) buddy allocator
▸ The slab allocator (kmalloc)

Establish controlled access to:
▸ Page tables
▸ Process credentials

Xen altp2m

2nd level address translation

CPU

I/O

Xen

Machine-physical memory

Dom0

Kernel Space

vCPU
Guest-physical memory

Buddy allocator

Slab allocator

#VE

xMP domain[1]

SlabSlabSlab

xMP domain[2]

PagePagePage

xMP domain[3]

PagePagePage

User Space

Hyper Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin SILM 2023 28

Pitfalls of Virtualization-assisted OS Security
If you want something done right, . . .

Retrofitting virtualization-assisted security primitives into existing OS kernels can be hard

▸ How to best partition an existing OS kernel’s code/data?
▸ Subject vs. object security domains
▸ Type-based security domains (2 vs n-coloring schemes)
▸ We are in need for privilege and data sensitivity metrics

▸ Determine the right granularity of security domains
▸ Reduce information leakage across security domains
▸ Avoid over-privileged security domains

▸ Can we automate partitioning of existing code bases?

Design future OSes with virtualization in mind!

S. Proskurin SILM 2023 29

Conclusion
Food for Thought

▸ Virtualization-assisted security has not been explored to its full extent
▸ Receives increasing acceptance from the industry
▸ CPU manufacturers continue announcing novel HW extensions

▸ Alleviate the strict separation between the OS and a VMM
▸ Leverage virtualization extensions as inherent building blocks from OS subsystems
▸ Dedicate a subsystem, or deploy virtualization-assisted services via a thin VMM

▸ Investigate further isolation primitives for security-sensitive subsystems
▸ For instance, isolated drivers and containers, secure memory allocators, etc.

▸ Investigate formal requirements for virtualization-assisted security architectures
▸ Extend open-source ISAs and introduce novel open standards to the community
▸ Influence hardware-vendors to develop dedicated features

S. Proskurin SILM 2023 30

Fin. Questions?

GPA to MPA
2nd level address translation

CPU

I/O

VMM

Machine-physical addresses (MPA)

Dom0 DomU

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

Memory
Mgt

Process
Mgt

Device
Drivers

User Space

Process Process Process

Container

System Call Interface

Hyper Call Interface

Kernel Space

vCPU

GVA to GPA
1st level address translation

Guest-physical addresses (GPA)

User Space

Process

System Call Interface

S
ys

te
m

M
od

e
K

er
ne

lM
od

e
U

se
rM

od
e

S. Proskurin SILM 2023 31

Contact

sergej@bedrocksystems.com
ï https://www.linkedin.com/in/sergej-proskurin/

� @proskurinserg

S. Proskurin SILM 2023 32

https://www.linkedin.com/in/sergej-proskurin/

	# whoami
	Disclaimer
	Organizational Structure
	On-demand Virtualization
	Motivation

	WhiteRabbit VMM
	On-the-Fly Virtualization
	Module Relocation & Isolation

	Virtual Machine Introspection
	Recap

	The Need for Stealthy Monitoring
	Motivation

	Requirements for Stealthy Monitoring
	Req. 1: Implementing Kernel Tap Points
	Req. 2: Stealthy Single-Stepping
	The Xen altp2m Subsystem on Arm
	Race-free Single-Stepping Scheme

	Req. 3: Execute-only Memory on AArch64
	Stealthy Single-Stepping Scheme

	Pitfalls of Virtual Machine Introspection
	High Potential & High Maintenance

	Virtual Machine Introspection
	Key Takeaways

	Virtualization-assisted OS Security
	Motivation & Background

	Virtualization-assisted OS Security
	Motivation & Background

	Selective Memory Protection (xMP)
	xMP in a Nutshell

	xMP Primitives
	1: Partition Memory into xMP Domains
	2: Empower Linux to Isolate Memory in xMP Domains
	3: Context-bound Pointer Integrity

	Integrating xMP into Linux
	Combine Memory Management with Virtualization Extensions

	Pitfalls of Virtualization-assisted OS Security
	If you want something done right, …

	Conclusion
	Food for Thought

	Fin. Questions?
	Contact

