
Towards the design and implementation of a language dedicated to virtual
machine introspection for security

Hemmerlé Lionel
CentraleSupélec, Inria,

Univ Rennes, CNRS, IRISA
Rennes, France

Hiet Guillaume
CentraleSupélec, Inria,

Univ Rennes, CNRS, IRISA
Rennes, France

Tronel Frédéric
CentraleSupélec, Inria,

Univ Rennes, CNRS, IRISA
Rennes, France

Wilke Pierre
CentraleSupélec, Inria,

Univ Rennes, CNRS, IRISA
Rennes, France

Prévotet Jean-Christophe
Univ Rennes, INSA Rennes, CNRS,

IETR – UMR 6164, F-35000 Rennes
Rennes, France

Abstract—When using a Host-based Intrusion Detection Sys-
tem (HIDS), we need to protect it against attackers who
manage to access a high privilege level. For that, we propose
to use virtualization extensions: the protected system can be
placed inside a Virtual Machine (VM) and the HIDS in
the hypervisor. In this case, even if the VM containing the
protected system is entirely compromised by an attacker,
including the virtualized operating system, the IDS will still
be functional. However, when the HIDS is located in the
hypervisor, although it can access the VM memory and
intercept all its communication with the hardware, it loses all
the abstractions given by the virtualized operating system. To
cross this semantic gap, we propose to create a new language
that can be used by the VM to write and send programs to
the hypervisor. Being produced by the virtual machine itself,
we assume that these programs will have the necessary level
of knowledge about the depths of the operating system used
by the virtual machine. The hypervisor will process those
programs and interpret them to detect intrusions.

Besides, since those programs came from an untrusted
source (the VM) and are executed in the hypervisor, we
discuss some security constraints that must be enforced
by our solution to ensure that it does not introduce new
vulnerabilities in the hypervisor.

We already implemented two kernel rootkits that can
hide a process from the userspace in the VM, and we created
a detection mechanism that receives from a VM a list of
memory areas that must be monitored by the hypervisor to
detect the two rootkits that we have implemented.

1. Introduction

The first step for reacting to an attack is to detect
it. An Intrusion Detection System (IDS) must be used for
this. Such an IDS can be either located on some important
nodes of a network or directly on the systems that must
be protected. Network-based IDS are generally limited
since they can only detect attacks leaving specific traces
on the network, and are then unable to detect local attacks
(for example a privilege escalation). Host-based IDS (also
known as Endpoint Detection and Reaction or EDR), run
directly on the system that must be protected, can detect

a much broader range of attacks. Nevertheless, they can
then be disabled by malware executed with sufficiently
high privileges [1]. For example, an attacker that can
compromise an operating system can kill processes related
to the IDS or can send false information to them. To
protect an IDS, we propose to use processor virtualization
extensions.

A virtualization extension is a hardware extension al-
lowing a processor to simulate multiple virtual processors.
Those virtual processors are created and managed by a
software component called a hypervisor, which can inter-
cept every interaction between a virtual processor and the
hardware to isolate the different virtual processors from
each other. Each virtual processor can then execute its
own operating system and constitutes a Virtual Machine
(VM). Since the hypervisor is executed with a higher
level of privilege than a VM, even if an attacker can
entirely compromise a VM, it will not be able to attack
the hypervisor or other VMs (assuming the hypervisor
does not have a critical vulnerability). Consequently, the
hypervisor can be used to protect a VM, for example, to
protect the kernel code [2] or to enforce the integrity of
some applications [3].

If we place an IDS inside the hypervisor, it has access
to the full content of the VM, including the VM’s memory,
and its exchanges with hardware. However, the IDS loses
the abstractions provided by the operating system running
inside the VM. For example, to retrieve the list of pro-
cesses running in a VM, the IDS needs to know how a
process is represented in the VM memory and where the
structures representing the running processes are stored.
The IDS also needs access to specific events occurring
in the VM, for example, the start of a new process. This
problem is known as the semantic gap problem [4].

Multiple approaches have been proposed to cross the
semantic gap. One such approach consists in patching
the VM kernel code to attach hooks to specific kernel
functions [5]. Those hooks can then detect some events
in the VM and communicate useful information to the
hypervisor, which can then potentially raise an alert. How-
ever, since this approach requires modifying the kernel
code accessible in the VM, malware can then detect the
modifications and can try to bypass those hooks.

Program

Memory

VM Hypervisor

Compiler
Interpreter

Sends

Observes

Figure 1. Representation of our detection system

Westphal et al. [6] developed a tool allowing users to
indicate to the hypervisor, in a domain-specific language,
which sequences of events occurring in a VM might be
caused by an intruder. However, their approach is limited
by the need for external configuration files for each OS
used in the multiple VMs to cross the semantic gap.

To get rid of those files, another approach consists in
using hyperupcalls [7]: a VM can send some programs to
the hypervisor, which can then execute those programs
to obtain information about the VM. This approach is
interesting because it does not require external configu-
ration files nor substantial changes inside the VM kernel.
Nevertheless, it has only been used to optimize the usage
of hardware resources by the hypervisor and its VM. Thus,
it lacks protections against intruders who may be able to
bypass an IDS made with those hyperupcalls.

In this work, our objective is to be able to detect
intrusions by allowing VMs to send programs written in
a specific language to the hypervisor. Section 2 gives a
high-level overview of our approach. Section 3 introduces
several malicious techniques that we aim at detecting with
our solution. Section 4 presents the features of the domain-
specific language we created, and the associated security
concerns. The language is described with more details
in appendix. Section 5 shows preliminary experiments in
which our modifications to the Xvisor hypervisor, running
on a Cortex-A53 ARM processor, allow to detect two
of the rootkits described in Section 3. Finally, Section 7
concludes and gives perspectives for future works.

2. Threat model and approach

We suppose that a malicious agent can entirely com-
promise a VM, including the VM kernel, and we will
focus on the detection of malware that may change in-
ternal data structures of the kernel (for example malware
that takes the form of a malicious kernel module) since
malware that runs only in userland can be detected without
the need of a hypervisor (they can be detected by an
IDS running inside the kernel). We will suppose that our
hypervisor is safe, and one of our objectives is to ensure
that our approach does not introduce new vulnerabilities
to the hypervisor that can be used by an attacker to
compromise the hypervisor, or another VM running on
top of it.

To detect kernel rootkits, we want the VM to be able
to describe, using a dedicated language, how intrusions
should be detected in the VM. Programs written in this
language will be communicated by the VM to the hy-
pervisor during the early phases of the VM’s life (we
assume here that the VM has not yet been compromised
during this early stage of its life) and should contain every
piece of information to allow the hypervisor to cross the

semantic gap. Those programs will be run as soon as the
hypervisor detects specific events in the VM (Figure 1).

Safely executing programs from untrusted sources
in a high-privilege context has already been done with
eBPF [8], with proof-carrying code [9] or with Singular-
ity [10], an OS which runs every process in ring 0 and
relies on properties of its language to ensure the system
safety.

To detect intrusions, the hypervisor should be able
to attach programs sent by the VM to various events
that may happen in the VM, including memory writes
in specific structures, function calls, and register changes.
The programs sent by the VM may then indicate to the
hypervisor whether it should raise an alert or if new events
should be monitored.

Our approach is analogous to the one used by eBPF
inside the Linux kernel: eBPF is a language designed to
trace events happening in the kernel from userspace. For
that, processes running in userspace can send programs
written in eBPF to the kernel, which can then compile
those programs, execute them and send the results to
the initial process. This approach is comparable to ours
since it implies getting programs provided by an untrusted
source (a process running in userspace) and executing
them in a privileged environment (the kernel).

However, our approach differs from eBPF since the
objective is not to provide the VM (the untrusted en-
vironment) insight into the state of the hypervisor (the
trusted environment) but right the opposite: the hypervisor
needs to get information about the state of the VM.
Consequently, programs run by the hypervisor will only
be able to access VM information, and their results will be
exploited by the hypervisor. This means that our solution
will have additional security constraints since an attacker
may be able to manipulate our program’s inputs (for
example the VM memory).

Hence we need to introduce some constraints to pre-
vent an attacker from compromising the hypervisor with
our solution. As an example, we must restrict the sending
of our programs during an initial phase in which we can
consider that the VM has not been compromised yet (for
example during the first boot). We must also guarantee that
programs sent by the VM and executed by the hypervisor
do not introduce vulnerabilities. For example, they should
not be able to access all the hypervisor memory.

3. Rootkits

In this section, we introduce rootkits which aim at
hiding their presence on the system. When users want
to access the list of running processes, they can use the
ps command, which parses the content of the /proc
directory. The /proc filesystem contains a folder for
every running process. To hide a process, a rootkit needs to
delete the corresponding folder or hide it from userspace.
In order to evaluate our ideas, we implemented two rootk-
its, which hide processes using two different methods. The
first one hides a folder by changing the syscall made when
a process wants to list the content of a directory, and the
second one changes the structures used by the Virtual File
System (VFS).

Program Handler

Syscall table

getdents64 atk
...

kernel space

Call

Return the
filtered list of files

syscall

Figure 2. Manipulation of the syscall table

getdents64 inode

file operations
...

iterate shared atk
...

Look

Points to

Return the filtered
list of files

Figure 3. Manipulation of Virtual File System structures

3.1. Syscall table

System calls are a way for the kernel to expose some
functionalities to running processes. For example, they can
allow processes to interact with filesystems.

When a program running in userspace wants to list
the content of a directory, it has to ask the kernel with
the getdents64 system call. When such a syscall is
performed, a handler in the kernel looks for the corre-
sponding function in the syscall table. This table consists
of a structure containing a pointer to a specific function,
one for each system call.

Consequently, to hide a folder from userspace, our
rootkit can alter the syscall table by replacing the pointer
to the function corresponding to the getdents64 syscall
with a pointer to a function controlled by the rootkit
(Figure 2). This function can then change the results of
the original getdents64 syscall to hide some entries.
In particular, it can hide folders located in the /proc
filesystem to hide some processes.

Thus, if we want to detect this rootkit from the hy-
pervisor, we need to be able to detect when a particular
process located in the VM tries to write in the syscall
table.

3.2. Virtual File System

The VFS is a component of the kernel providing a
uniform interface for all the filesystem types supported
by the kernel. It specifically exposes structures called
inodes that represent files and folders, and structures
called file_operations that contain various function
pointers used to operate on inodes. Consequently, when a
program in userspace uses the getdents64 syscall to
get the content of the /proc directory, the kernel accesses
the corresponding inode, which contains a pointer to a
structure file_operations. It then calls the function
pointed by the iterate_shared field, which is used
to read the content of a directory.

The second rootkit that we implemented can then
replace the value of that iterate_shared field with

a pointer to a function that can hide entries related to
processes we want to hide (Figure 3).

If we want to detect this attack from the hy-
pervisor, we need to detect writes to the structure
file_operations used by the inode representing
the directory /proc.

More generally, the hypervisor needs to detect some
write operations in the VM memory. Note that, in the two
examples we introduced so far, the addresses at which
memory writes should be detected are constant, i.e. they
do not evolve during the life of the VM (they could how-
ever be different at each boot, e.g. due to KASLR [11]).

3.3. More complex rootkits

The two rootkits described previously can be detected
only by monitoring memory writes in some specific struc-
tures, but more complex attacks can also be performed.

For example, to hide a running process, a rootkit can
alter the task_struct structures used to represent a
process and the pid structures to ensure that the /proc
filesystem does not see the hidden process.

Another approach is to create a new invisible process
directly by manually creating a new task_struct,
without using built-in functions. This approach requires
to take steps to ensure that the newly created process is
correctly scheduled by directly modifying the structures
used by the scheduler. By doing so, this process will
never have an entry created in the directory /proc and
consequently, it will never be shown to userspace.

Those two attacks are harder to detect since they only
need to modify structures that are evolving during the
normal life of the VM since new processes are naturally
created and destroyed. To detect them, we need to catch
modifications of the scheduler’s structure that do not go
through the standard functions such as fork or clone.

4. Language

To detect complex attacks, we propose to create a
dedicated language that a VM can use to communicate
to the hypervisor when an alert must be raised. Programs
written in this language will be executed by the hypervisor
as a reaction to some events occurring inside the VM.
We also need to ensure that the ability of the VM to
send programs to the hypervisor does not introduce new
vulnerabilities in the hypervisor. This can be done with
verifications at compile and at run time.

Though the implementation of our language is still
underway, we give an overview of its syntax and precise
features in Appendix A. In this section, we describe the
properties that our language must satisfy in light of the
common techniques used by rootkits described in previous
section.

4.1. Features

Since our objective is to detect and react to various
events happening in a VM, our language needs to be
designed using an event-driven approach (in the same
vein as [12]). Some examples of events that our language
needs to address are: (1) writes in some memory area;
(2) changes of some system registers; (3) execution of
instructions located at a given address.

TTBR1 EL1 page table level 0 page table level 1 page table level 2 page table level 3

virtual address

intermediate address

VTTBR EL2 page table level 0 page table level 1 page table level 2 page table level 3

Physical address

Figure 4. Address translation mechanism for a VM. Nodes in blues are controlled by the hypervisor while those in white are controlled by the VM.

4.1.1. Writes in memory. Detecting writes in some mem-
ory areas is necessary to detect most of the existing kernel
rootkits (including the two rootkits we implemented),
since they rely on the modifications of kernel data struc-
tures to hide information to userland. Those events are
represented as mem access in Figure 5, and can be de-
tected by the hypervisor by modifying the structures used
in the stage of the translation mechanism controlled by
the hypervisor to forbid writes.

A process interacting with memory (e.g. through
pointers) does not manipulate physical memory addresses,
but virtual memory addresses. These virtual addresses
are then translated by the processor using page tables
whose physical addresses are stored in system registers
called TTBR0_EL1 (for userspace) and TTBR1_EL1 (for
kernel-space). Page tables are created for the kernel and
for every running process.

With our configuration, the TTBR0_EL1 registers are
pointing to the level 0 page tables used by the address
translation mechanism, which contain addresses of the
level 1 page tables, which contain addresses of the level
2 page tables. In turn, these pages contain addresses
of the level 3 page tables, which then contain physical
addresses of 4kB contiguous regions of memory called
pages. The physical address of any virtual address can then
be obtained by combining the upper bits of the physical
address of a page and the lower bits of the virtual address.

As shown in Figure 4, when the kernel is launched
in a VM, the address translation mechanism described
previously is used to get an intermediate address, which
is then transformed into a physical address thanks to a
similar mechanism controlled by the hypervisor.

The page tables controlled by the hypervisor contain
flags indicating to the processor whether the VM can read,
write or execute the content of each page. We can then
forbid writes on a page containing protected data to ensure
that the hypervisor is notified each time a write happens
on a protected structure. When it happens, the hypervisor
can then execute the corresponding program written in our
language before resuming the VM execution.

4.1.2. System registers writes. System registers are used
to configure the processor, and some of them can be
accessed in the VM. For example, TTBR1_EL1 and
TTBR0_EL1 which are used by the Memory Management
Unit to translate virtual addresses into physical addresses
can be changed by an attacker to replace some kernel
data structures without writing directly into them. Writes
in system registers can be detected by setting appropriate
flags in the system register HCR_EL2 which can only be

accessed by the hypervisor. These events are represented
as reg access in Figure 5.

4.1.3. Execution of an instruction. Detecting the exe-
cution of an instruction located at a given address is a
necessary step to detect function calls. By doing so, we
can detect advanced attacks that modify structures that
may be changed legitimately during the VM execution.
These events are represented as break in Figure 5.

For example, if a rootkit tries to change the effective
user id of a process to give it root privileges, we can catch
it because this change can only happen legitimately under
certain conditions, implying the use of a specific syscall
(setreuid for example). Consequently, by monitoring
the executions of the syscalls able to change the effective
user id and the writes to the memory address at which the
effective user id of a process is stored, we can detect if a
change is benign or not.

Those can be detected by replacing the instruction
we want to detect with an invalid instruction, and by
configuring the hypervisor to handle the invalid instruction
exception. Since this implies changing the code acces-
sible from the VM, we must forbid writes on the page
containing the modified instruction to avoid an attacker
reverting our change, but since the kernel is not supposed
to change its code, this should not impact untampered
VMs. When the VM tries to execute the invalid instruction
written by the hypervisor, an invalid instruction exception
is raised by the hypervisor, which can then replace the
invalid instruction with the real one, and execute exactly
that instruction in the VM before replacing again that
instruction with the invalid one (in a similar way than
when the hypervisor detects writes in memory).

The hypervisor can then hide the instruction changed
by the hypervisor by forbidding reads on a page until
the VM effectively attempts to read it. In that case, the
hypervisor can then replace the invalid instruction with
the original one, and it can change the permission for
that page to allow reads and forbid code execution until
the VM tries to execute that code. In that case, the
hypervisor places again the invalid instruction, reallows
code execution, and forbids readings.

4.1.4. VM Memory accesses. When an event is detected
in a VM, the corresponding program executed by the
hypervisor may need to access the VM memory. For that,
we provide the expression VMmem α (see Figure 5), which
takes a virtual or intermediate address and return the value
stored at that address in the memory of the monitored VM.

4.1.5. Dynamic event capture. The events that we want
the hypervisor to monitor may change throughout the

execution of the VM: for example, if a new process
is created, the hypervisor will have new structures to
watch, like the task_struct structure that represents
the new process, or the creds structure which contains
the effective user id of the process. On the opposite, when
a process is killed, the hypervisor should stop watching
related events since the memory containing data structures
representing the process can be reused for other purposes.
Consequently, the language must allow dynamic regis-
tering and unregistering of events during the lifetime of
the VM. This is the purpose of the add listener and
remove listener instructions in Figure 5.

4.2. Security Constraints

Since the programs are sent by a VM and take as input
events happening in the VM and its memory, some pro-
tections have to be implemented to ensure those programs
cannot be used to compromise the hypervisor.

4.2.1. Emission of unwanted programs. First, we need
to restrict the ability of a VM to send programs to the
hypervisor to ensure that an attacker cannot send its own
malicious programs. For that, we suppose that the VM is
safe when booted for the first time, it can thus send its pro-
grams and then, can send a signal (stop trusting me in
Figure 5) to the hypervisor indicating that the last program
has been sent. Since this signal is emitted while the VM
is still considered safe, an attacker cannot try to block it
and cannot send its programs afterwards, since they will
be ignored by the hypervisor (any attempt to send a new
program may raise an alert when the VM is not trusted).

4.2.2. Language safety. Since the programs sent to the
hypervisor react to events possibly triggered by an at-
tacker, we must ensure that programs in our language
cannot compromise the memory of the hypervisor, or leak
data from another VM. The language described in Figure 5
does not allow programs to perform unrestricted memory
accesses. The only memory accesses that are permitted
are read accesses through the VMmem expression, and map
manipulations. In the first case, the interpreter will ensure
the requested address belongs to the VM and is valid; in
the second case, the interpreter will check the validity of
the map accesses.

The language only allows statically bounded loops,
thus preventing infinite loops.

In order to defend against Denial-of-Service (DoS)
attacks, we can bound the number of listeners registered
for a single VM, and raise an alert when the threshold is
reached.

4.2.3. Step by step mode. Some event detection needs
to rely on the ability to execute only one instruction in
the VM before re-enabling some protections. For that, we
use the debug extension of ARM processors to trigger
software-step exceptions each time an instruction is exe-
cuted in the VM when we remove protection. This allows
us to properly detect concerned events, but it introduces
some security caveats: we need to change the value of the
MDSCR_EL1 register and the value of PSTATE which can
be accessed by the VM. We also need to make sure that,

in VM with multiple cores, protections are lifted only for
the core in which the concerned event is detected.

To prevent changes to the MDSCR_EL1 register and
the PSTATE, we must then ensure that the instruction
executed in step-by-step mode is not an MSR instruction
(this instruction is used to write in system registers), and
we need to guarantee that exceptions cannot be triggered
in the VM, since such an exception may change the
PSTATE, allowing the VM to execute multiple unwanted
instructions.

5. Integration

We used XVisor [13], a minimalist hypervisor that can
be executed on ARM processors, to run a VM containing a
Linux kernel. We implemented XVisor on the Cortex-A53
processor of a Xilinx Zynq UltraScale+ ZCU104 board.
XVisor and the VM were configured to use two physical
UARTs: one connected to XVisor itself, and the other
connected in pass-through to the VM.

We implemented the two rootkits described in Sec-
tion 3 that can be executed in that kernel and which can be
used to hide a process from userspace in the VM. Hidden
processes cannot be seen inside the VM by running ps
or by manually looking into the /proc filesystem). We
then patched XVisor to detect those rootkits.

5.1. Rootkits

We implemented the two rootkits described in Sec-
tion 3 as kernel modules for version 5.11 of the Linux
kernel that implements the described behaviors.

To implement the rootkit that modifies the syscall
table, we had to find the address of that table.
Since it can change at each boot, we used the
kallsyms_lookup_name function which takes any
symbol’s name as a parameter and returns its address
in the kernel. Note that this function is not supposed
to be accessible for kernel modules. To find the func-
tion’s address, we used a kprobe [14]. Kprobes are a
mechanism allowing to trap almost any function to de-
bug the kernel. We can then register a kprobe target-
ing the kallsyms_lookup_name function to obtain
a kprobe struct containing the function’s address. It
is then possible to call that function to obtain the syscall
table address (since the syscall table is not a function, we
cannot obtain its address directly with a kprobe).

For the aarch64 architecture, the entry we need to
change to replace the getdents64 syscall is located
at index 61 of the syscall table. Since the syscall ta-
ble is read-only, our kernel module cannot change it
directly. It needs to bypass the write protection on
it. For that, we decided to use the kernel function
aarch64_insn_patch_text which maps the physi-
cal page containing the data that need to be written to a
new virtual address on which writes can be performed.

To communicate the pid of the process we want to
hide with this kernel, we decided to also change the
function called when the syscall kill is made. When
it is used to send a specific signal to a process, the syscall
is intercepted by our rootkit, which then hides the targeted
process from userspace.

To implement the rootkit modifying the VFS, we used
the filp_open function that returns a pointer to a struct
file containing itself a pointer to the inode of the opened
file or folder. With that, we could obtain the address of the
inode representing the /proc folder, allowing us to get
the address of the corresponding file_operations.
Then, we can change the field iterate_shared of that
structure to perform the attack.

5.2. Rootkit detection

To detect the two rootkits we implemented, we patched
XVisor to catch some writes in the VM memory. To
do so, we changed the permission flag of the entries
corresponding to the physical address of the structures
we want to protect in the page table level 3 used by
the translation mechanism (Figure 4) to reduce at the
maximum the size of the memory area in which writes
are forbidden by the hypervisor.

To increase its performance, XVisor uses mega pages
when mapping the VM memory to the physical memory:
It thus exploits the possibility for page table level 2 to
point directly to physical memory instead of a new page
table. This reduces the number of steps needed to translate
a virtual address by one. Consequently, since the data we
want to protect are mostly smaller than a mega page, we
split those mega pages into 512 regular pages by creating
the necessary level 3 page table to reduce the amount
of data that may unnecessarily trigger exceptions in the
hypervisor.

Since the structures in which we want to monitor
writes are not aligned with page boundaries, some excep-
tions may be raised by legitimate writes on the same page
of a protected structure, but not in those structures. Those
writes should still be executed by the VM. Furthermore,
some instructions that write on memory have side effects
(they can change the value of some registers). Conse-
quently, they cannot be skipped by the hypervisor without
risking provoking a kernel panic in the VM, even if they
try to write on protected structures. Thus, the hypervisor
still needs to execute the writes and differentiate those on
protected structures and those around them. For that, when
a data abort exception (the exception received by
the hypervisor when the VM tries to access an area of
its memory protected by the hypervisor) happens, the
hypervisor can allow writes on the concerned page and
execute the VM in step-by-step mode to execute only
the faulting instruction. Once the instruction is executed,
the hypervisor can check if protected structures on the
page have been modified. If a modification is detected,
the hypervisor can then raise an alert and revert the write.

Since a page can contain up to 4 kilobytes of protected
data, we can use the fact that an instruction will not write
more than 8 consecutive bytes in memory and, when a
data abort exception occurs, the FAR_EL2 reg-
ister contains the faulting virtual address. Consequently,
the hypervisor only has to verify whether any of the 8
written bytes are protected.

To effectively protect a VM, the hypervisor needs to
know where the structures we want to monitor are located
in the VM memory. Their addresses should be sent by the
VM using programs written in the language described in
Section 4. Since this language is not implemented yet, we

implemented a hypercall allowing a VM to send a list of
memory areas, in which writes should be forbidden to the
hypervisor.

With this system, XVisor is now able to detect writes
on memory areas indicated by the VM. If that VM asks
the hypervisor to forbid writes on the syscall table and
the structure file_operations of the /proc folder,
the hypervisor can now raise alerts if writes on those
structures happen. This allows the hypervisor to detect
the two rootkits we have implemented. Furthermore, since
changes in the protected memory areas are reversed by
the hypervisor, we can even protect the VM against those
attacks.

6. Limitations

Our proposal is not fully implemented yet, hence we
cannot provide a measure of the performance overhead
induced by our approach. We expect that in order to
prevent against advanced attacks, the number of events
to monitor will grow significantly, and impact the perfor-
mance negatively.

The current state of our implementation only allows
to detect simple rootkits, that try to write on read-only
data (Type-I malwares according to Rutkowska’s classi-
fication [15]). More complex attacks (Type-II malware),
that may change data which can be subject to legiti-
mate changes, e.g. by modifying structures related to the
scheduling process, or structures used to represent a given
process, are currently out of reach of our implementation
(although they could be tracked by dynamically adding
new event listeners).

7. Conclusion and future work

We implemented two rootkits that can be used to hide
a process in a VM by modifying data structures in the
Linux kernel. We then implemented a way to detect those
rootkits in XVisor, by monitoring writes in some areas
in the VM memory, as well as an hypercall allowing the
VM to communicate which areas of its memory may be
written by a rootkit.

Our next step is to work on the implementation of
the proposed language, in particular through the use of
an interpreter in the hypervisor. We will evaluate the
performance overhead on a set of benchmarks, and try
to optimize our event monitoring. On the long-term, we
could also explore using a Just-In-Time (JIT) compiler to
improve performance while maintaining the same level of
security.

References

[1] Wavestone Cybersecurity and Digital Trust practice. (2022) EDR-
SandBlast. [Online]. Available: https://github.com/wavestone-cdt/
EDRSandblast

[2] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “Secvisor: A tiny
hypervisor to provide lifetime kernel code integrity for commodity
oses,” in Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, 2007, pp. 335–350.

[3] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and
A. Perrig, “Trustvisor: Efficient tcb reduction and attestation,” in
2010 IEEE Symposium on Security and Privacy. IEEE, 2010, pp.
143–158.

https://github.com/wavestone-cdt/EDRSandblast
https://github.com/wavestone-cdt/EDRSandblast

[4] B. Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “Sok:
Introspections on trust and the semantic gap,” in 2014 IEEE
symposium on security and privacy. IEEE, 2014, pp. 605–620.

[5] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An
architecture for secure active monitoring using virtualization,” in
2008 IEEE Symposium on Security and Privacy (sp 2008), 2008,
pp. 233–247.

[6] F. Westphal, S. Axelsson, C. Neuhaus, and A. Polze, “Vmi-pl: A
monitoring language for virtual platforms using virtual machine
introspection,” Digital Investigation, vol. 11, pp. S85–S94, 2014,
fourteenth Annual DFRWS Conference.

[7] M. Wei and N. Amit, “Leveraging hyperupcalls to bridge the
semantic gap: An application perspective.” IEEE Data Eng. Bull.,
vol. 42, no. 1, pp. 22–35, 2019.

[8] BPF and XDP reference guide — cilium 1.10.6 documentation.
[Online]. Available: https://docs.cilium.io/en/v1.10/bpf

[9] G. C. Necula and P. Lee, “Safe kernel extensions without run-time
checking,” in OSDI, vol. 96, no. 16, 1996, pp. 229–243.

[10] G. C. Hunt and J. R. Larus, “Singularity: rethinking the software
stack,” ACM SIGOPS Operating Systems Review, vol. 41, no. 2,
pp. 37–49, 2007.

[11] C. Canella, M. Schwarz, M. Haubenwallner, M. Schwarzl, and
D. Gruss, “Kaslr: Break it, fix it, repeat,” ser. ASIA CCS ’20,
2020, p. 481–493.

[12] Bpftrace github repository. [Online]. Available: https://github.com/
iovisor/bpftrace

[13] Xvisor hypervisor. [Online]. Available: https://github.com/xvisor/
xvisor

[14] Kernel probes (kprobes). [Online]. Available: https://docs.kernel.
org/trace/kprobes.html

[15] J. Rutkowska, “Introducing stealth malware taxonomy,” 2006.

A. Syntax

We present the syntax of our proposed language in
Figure 5. Commands (Cmd) are the messages sent by the
monitored OSes to the hypervisor in order to bridge the
semantic gap. Commands can indicate the (intermediate)
address of the kernel page table, create a map (à la eBPF,
where maps are key-value stores), define a function, call a
function, or indicate to the hypervisor that the OS should
not be trusted after this point.

Functions are simply names associated with instruc-
tions (no parameter passing and no function calls from
within functions). Instructions (Instr) can be skip (do
nothing), a sequence i1; i2, an assignment x := e, a
statically bounded loop loop n i (that runs i exactly
n times), a conditional instruction if − then − else,
map updates (update and delete), raising an alert and,
most importantly, registering a new event handler with
x ← add listener ev f and removing a listener with
remove listener x.

The events we can add listeners to are memory ac-
cesses (read or writes) to a specified range of addresses
ι, system register accesses, and breakpoints at a given
address. An address is given as a pair (k, e) where e
is an expression evaluating to the concrete address as a
uint64 and k specifies the kind of address: intermediate
(i.e. physical address for the virtual machine) or virtual
(relative to the kernel page table). Similarly, a range of
addresses ι is a 3-tuple (k, lo, hi) where k indicates the
kind of addresses and lo and hi are the bounds of the
range considered.

x ∈ Var
m ∈MapId

k ∈ Key
u ∈ Uint64

f ∈ FunName ::= string
r ∈ Reg ::= pc | reg(i)
e ∈ Expr ::= cst u | var x

| binop bop e1 e2 | unop uop e
| lookup m k
| VMreg r | VMmem α
| event

k ∈ Kind ::= Intermediate | Virtual
α ∈ Addr ::= Kind×Expr
ι ∈ Range ::= Kind×Expr×Expr
a ∈ Access ::= R | W
ev ∈ Event ::= mem access a ι

| reg access r
| break α

i ∈ Instr ::= skip | i1; i2 | x := e | loop n i
| if e then i1 else i2
| delete m k | update m k e
| alert
| x← add listener ev f
| remove listener x

c ∈ Cmd ::= kernel pagetable u
| m := create map
| fundef f i
| dofun f
| stop trusting me

Figure 5. Syntax of the proposed language

Expressions (Expr) are either constants (cst u, where
u ∈ uint64), variables (var x), unary (unop) and bi-
nary (binop) operations on expressions, map lookups
(lookup), guest OS register read (VMreg) and memory
read (VMmem). A special expression event contains an
encoding of the event we are currently responding to.
Considering memory addresses do not use all the 64 bits
available (restricting the address bus width to 56 bits
for example), we can imagine the following encoding:
bits 63-62 indicate the type of event (memory access,
register access, breakpoint, no event), bit 61-60 indicates
the access type (in the case of memory or register access,
read or write or execution for breakpoints), and remaining
bits 59-0 encode the memory address or the number of the
register that was accessed.

https://docs.cilium.io/en/v1.10/bpf
https://github.com/iovisor/bpftrace
https://github.com/iovisor/bpftrace
https://github.com/xvisor/xvisor
https://github.com/xvisor/xvisor
https://docs.kernel.org/trace/kprobes.html
https://docs.kernel.org/trace/kprobes.html

	Introduction
	Threat model and approach
	Rootkits
	Syscall table
	Virtual File System
	More complex rootkits

	Language
	Features
	Writes in memory
	System registers writes
	Execution of an instruction
	VM Memory accesses
	Dynamic event capture

	Security Constraints
	Emission of unwanted programs
	Language safety
	Step by step mode

	Integration
	Rootkits
	Rootkit detection

	Limitations
	Conclusion and future work
	References
	 A: Syntax

