
Emulating Side Channel Attacks on gem5: lessons learned

Lilian Bossuet
UJM Saint-Etienne, CNRS,

Institut d’Optique Graduate School,
Lab. H. Curien UMR 5516, F-42023,

SAINT-ETIENNE, France
lilian.bossuet@univ-st-etienne.fr

Vincent Grosso
UJM Saint-Etienne, CNRS,

Institut d’Optique Graduate School,
Lab. H. Curien UMR 5516, F-42023,

SAINT-ETIENNE, France
vincent.grosso@univ-st-etienne.fr

Carlos Andres Lara-Nino
UJM Saint-Etienne, CNRS,

Institut d’Optique Graduate School,
Lab. H. Curien UMR 5516, F-42023,

SAINT-ETIENNE, France
carlos.lara@univ-st-etienne.fr

Abstract—Side channel attacks (SCA) have the potential of
disrupting the trust of the users on computing platforms
and cryptographic algorithms. The main challenge in the
design of countermeasures against such threats is that an
evaluation of their effectiveness can only be performed
after they have been implemented. By that point, significant
resources would have been invested in the creation of a
prototype. Moreover, the large volume of combinations from
all the potential target algorithms and computing systems
complicates a systematical analysis. It is necessary to find
strategies to simplify and systematize the study of SCAs and
their countermeasures. gem5 is a cycle-accurate simulator
which offers the possibility to emulate a broad range of
computing architectures. Beyond the functional verification,
this tool computes multiple physical statistics from the sim-
ulated system. In this paper, we discuss the lessons learned
from using gem5 to simulate SCAs on an ARM system. Our
work shows that while there is a correlation between the data
and the reported statistics, there are significant challenges
that must be addressed to improve the use of gem5 for the
emulation of physical phenomena.

1. Introduction

Modern computing systems (like the IoT, wearable
devices, and autonomous vehicles) exhibit characteristics
that distinguish them from conventional computers. They
run in large, unstructured environments to bring services
closer to the user. They are networked and collaborate
with each other to solve complex tasks with a limited
investment of resources per device. They are ubiquitous
and heterogeneous. But most importantly, they manage
large volumes of data which may require to be protected
from unauthorized access or modification. Cryptographic
algorithms are the tools of choice for supplying secu-
rity services such as confidentiality and integrity to the
data. They may take different forms and offer distinct
performance and cost tradeoffs as to be of use for many
computing systems. But all of them, from a theoretical
point of view, base their security on hard computing
problems. Finding the correct solution [1] would be harder
than looking for a particular grain of sand on earth [2].

Under formal security assumptions [3] it is necessary
to consider that a potential attacker may gain access to
the forward transformation of a cryptosystem (chosen
plaintext attack) and even its inverse function (chosen

ciphertext attack). To regard the system as secure, it
must resist any potential attacks when these oracles are
available to the adversary. That is, the attacker shall not
gain any other information from the queries performed
to the functional oracles. However, in practice, there are
more sources of knowledge which may give the adversary
an advantage to compromise the security of the system.
Any computing device is, by nature, an agglomeration of
physical phenomena. So goes the phrase “we have tricked
a rock into thinking.” Consequently, there are magnitudes
which can be seen and quantified when the system runs.
Some of these measurements are bound to be correlated
with the data being processed by the platform [4]. If
the system happens to perform cryptographic operations,
these will also affect the different magnitudes of the
device: supply power, electromagnetic emanation, clock
frequency, heat dissipation, etc. Thus, it is said that data is
leaked from the platform. If an attacker can tap into these
side channel leakages, they will gain access to a large
volume of data to aid in their venture. It is suspected that
any cryptographic algorithm can be broken with enough
traces of its operation [5].

The power [4] and electromagnetic [6] fingerprints
of a circuit are commonly used to perform SCAs on
its cryptographic algorithms. These magnitudes fluctuate
quickly enough to give a good indicator of the status
of the device. This characteristic, however, implies that
sophisticated equipment may be needed to capture the
information. After all, this is a typical problem of sam-
pling [7]. Quick variations of small circuits may only be
captured by expensive oscilloscopes and spectrum analyz-
ers. Which difficulties the task of the attacker. They not
only require direct access to the device; they must also
count on the necessary equipment to mount an attack. Or
so we thought. Recent works have shown that attackers
do not require direct access to the target platform [8],
[9] nor specialized analysis devices [10], [11] to mount
power analysis attacks on internet-enabled platforms. If
we remember that a current trend of technology is their
hyper-connectivity [12], suddenly these devastating at-
tacks become more concerning.

Cryptographic algorithms can be protected against
SCAs by employing different obfuscation techniques such
as masking [13] and shuffling [14]. These countermea-
sures, however, are adjusted for every algorithm and re-
quire extensive testing to confirm their effectiveness [15].
Additionally, some mitigation strategies may be favored



for some platforms in function of the system constraints.
This implies that multiple solutions may need to be
evaluated to come up with the best choice. Developing
and implementing multiple prototypes can burden any
project with significant expenses. Computer aided design
may supply a solution to some of these problems. This
strategy could be adopted to perform many tests with
small implementation costs.

The gem5 simulator [16] can emulate the operation
of multiple processors including ARM and RISC-V. This
is done not only in a behavioral sense but modeling the
platforms at the level of micro-architectural components.
gem5 has been used to emulate attacks against micro-
architectures such as RowHammer [17] and Spectre [18].
The main interest for studying these attacks in gem5 is that
this software is open source and can be easily customized
to model different hardware components. For example,
it is possible to emulate custom hardware accelerators
along complex processor systems. It is also possible to
parameterize the simulation and customize the system to
test multiple architectures. Therefore, it is a useful tool to
test multiple target architectures and implement and test
potential countermeasures.

A gem5 simulation creates a large set of statistics asso-
ciated with the operation of the system. These data can be
used to study the behavior of the different components in
the simulated platform. For example, we can estimate the
instructions processed by the ALU and the memory access
activity. These estimations will depend on the data being
processed by the core or even on the activity of any custom
accelerators that can perform direct-memory access. In our
case, we focus on the first scenario. As the activity of
the multiple underlying components will affect the power
consumption of the entire system, we propose that the
simulation statistics can be used to approach the electrical
behavior of a simulated platform. Therefore, if there is any
correlation between the metrics of the simulation and the
application data, then gem5 could be employed to emulate
SCAs.

In this paper, we use gem5 to perform the emulation of
an ARM processor with a Linux-based operating system.
We employ the platform described in [19] which features
TrustZone [20] and OP-TEE [21] as logical protections.
Using this system, we implement different cryptographic
operations and analyze the process for retrieving and
processing the simulation statistics. With these data we
try to perform correlation power analysis, simple power
analysis, and power-based covert channels. To the best
of our knowledge, this is the first time such an analysis
has been conducted. Our findings show that the data
acquisition process is particularly challenging to conduct
some of these evaluations. Nonetheless, we show points
of utility for the improvement of the simulator to make
the proposed approach more practical.

The rest of the paper is structured as follows. In
Section 2 we discuss related works from literature. In Sec-
tion 3 we describe our methods and the results obtained.
Lastly, Section 4 presents a discussion of our findings
and concludes this work. As an appendix, Section A has
further details on our experimental work.

2. State of the Art

The literature reports multiple analysis tools which
allow to study the energy footprint of a circuit before it is
implemented. They intend to model the power dissipation
of the design based on different approaches. These power
estimations can be used, in some cases by the same tool,
to detect information leakage in the design.

Some of the most used power analysis solutions have
been created by technology vendors and thus are special-
ized for their products. We can mention, for example,
Incisive Palladium III by Cadence Design Systems and
XPower Analyzer by AMD-Xilinx. The former allows to
study the dynamic power dissipation of ASIC designs and
the latter supplies static and dynamic power estimation for
FPGAs. Incisive Palladium III employs the gate model
of the chip whereas XPower Analyzer employs the RTL
model of the design. Therefore, it is necessary to design
and describe the architecture to use these tools.

Other tools which employ the gate model of the circuit
to study potential leakage sources include PARAM [22],
ACA [23], and CASCADE [24]. These tools analyze the
signals or gates in the design to estimate the points of
interest for side channel analysis. The main drawback for
ACA and PARAM is that they are closed-source projects,
and while CASCADE claims to be open source it relies on
commercial EDA tools such as PrimeTime by Synopsys.
RTL-PSC [25] is a tool similar in functionality, however
it only requires the RTL specification of the circuit. This
system also relies on proprietary software, in particular
VCS by Synopsys.

Leakage verification is another approach for evaluating
the vulnerability of a circuit against SCAs. It relies on
formal methods for assessing the information leakage
such as Hamming models and TVLA. Several tools in
the market employ the gate model of the platform for
conducting such analyses. We can mention SCRIPT [26]
and PATCH [27] in this category. Others like AMASIVE
[28] and KARNA [29] employ higher abstractions and
thus require a lower design investment for their use. All
these systems are proprietary.

Open-source tools for leakage verification include
MAPS [30] and COCO [31]. The former is exclusive
for ARM Cortex M3 systems but is not cycle accurate.
The latter can analyze any circuit but requires a gate-
level description of the platform. Another tool which relies
on an open-source initiative is SLEAK [32]. This system
employs gem5 to perform the emulation of ARM Cortex
A8 processors. However, SLEAK itself is not readily
available.

The general problem with these tools is that most of
them are in some part closed-source projects. Furthermore,
most of them are meant to study simple models of the
system under test and not complete architectures. gem5,
on the other hand, can emulate large architectures with
relative ease. Another drawback of most of the tools in
the literature is that they perform leakage analysis or
verification over the gate model of the system under study.
This means that it is necessary to design and describe the
platform to later analyze it. However, this process implies
a significant investment which we intend to prevent. In
contrast gem5 only requires a functional model of the
architecture thus effectively reducing the design cost.



3. Methods

In this Section we describe the virtual architecture sim-
ulated in gem5. We illustrate our method for retrieving the
statistics of operation and how to process the information.
Finally, we describe our experiments in analyzing these
data to emulate SCAs.

3.1. The simulated platform

This work uses the virtual and open platform from
[19] that simulates the behavior of micro-architectural
features and their interactions with the peripherals, like
accelerators and memories in emerging technologies.

A gem5 simulation is composed of Python configu-
ration files and C++ program files, which are compiled
into a gem5 binary. The simulator behaves like a Python
interpreter. The configuration files connect Python objects,
which are either other Python objects or gem5 primitives
standing for hardware modules, through ports generally
using a gem5 memory packet protocol. The hardware
primitives can be configured using parameters directly in
the Python configuration file. We can, for example, specify
the type of processors to be used, the size and technology
of the cache, and even include ad-hoc components to stand
for hardware accelerators.

One of the interesting characteristics of gem5 is that it
allows to model different processor architectures (x86,
ARM, RISC-V) and specify multiple optimization levels
(debug, opt, fast) to study multiple characteristics
of the system. In our work, we focus on ARM platforms
and use the opt level to conduct our experiments. Another
detail to consider is that the simulator can perform either
system-call emulation or full simulation of a platform. We
have chosen the latter as this method allows us to obtain
statistics which are closer to those found in a physical
device.

We have simulated a single-core system with an
HPI processor model, which extends the conventional
MinorCPU (a timing model). We chose to use a single
core to reduce the complexity of the simulation and the
number of statistics produced. The system was provided
with L1 and L2 caches as well as a memory management
unit (MMU). We added a 2GB DDR3_1600_8x8 unit
which was emulated using Ramulator [33]. We employed
the VExpress_gem5_Foundation machine type
which allows to execute the ArmTrustedFirmware
workload [34]. As in [19] we have also included the
OP-TEE runtime in the simulation. This allowed us to
study the behavior of a protected system and analyze its
resilience against power attacks. Figure 1 illustrates the
characteristics of the simulated platform.

From every execution of the simulation, gem5 dumps
statistics like the number of IntAlu instructions executed
or the frequency of the processor, by default with a rate
of 1E−3. That is, every simulated millisecond a statistics
file is updated with different measurements. This sampling
rate can also be adjusted in the configuration file for the
simulation. In this way it is possible to generate data
at a rate consistent with the sampling theorem [7]. For
example, if the core is running at 1MHz then it will be
necessary to use a dump rate under 5E − 7.

Hardware Acelerators Processing System Memory

VExpress_GEM5_Foundation

GPU / FPGA / HW IP

CORE: HPI TEE

L1I: 48kB L1D: 32kB

L2: 1MB

LLC

DDR3: 2GB

Power analysis attacks using

side channel leackage of the platform

Covert channel attacks leveraging

the power footprint of the CORE

Gem5 SoC model

Figure 1: The architecture under analysis.

The main problem with this approach is that bumping
the dump rate increases the complexity of the simulation
and the volume of data produced. On the other hand,
reducing the frequency of the core causes the simulation
to behave erratically. The lowest frequency we managed to
employ was 2MHz, but it was impossible to perform any
significant computations with the system. With our evalu-
ation platform (Ubuntu 20.04 LTS, 11th Gen Intel Core i7
@ 3.00GHz × 8, 32 GiB RAM, gem5 v21) we found that
it was possible to use a core frequency of 10MHz and an
acquisition rate of 25MHz. Even then, some statistics files
reached the size of 1TB. We developed basic Python and
Matlab scripts to separate all the statistics into independent
time-series and analyze the data.

The main idea of using the simulation statistics to
approximate the power dissipation of the system comes
from [35]. A simple non-representative power model can
be approximated as shown in Equation 1. Evidently, the
dynamic component of the model would be the most
useful for power analysis. In Figure 2, we illustrate how
the statistics retrieved from a gem5 simulation can be used
to approach a power estimation.

pow = dyn+ stat

dyn = V × (2A× ipc+ 3pA× dentry misses)

stat = 4× temperature

(1)

An important challenge in the analysis of the samples
obtained from the operation of a processor is to accurately
find the different parts of its program. As illustrated in
Figure 2b, we overcome this drawback by changing the
core frequency at precise points of its operation. This is
performed with the same mechanism we use to decrease
the operational frequency to follow the sampling theorem.

Another problem with this approach is that the
goodness-of-fit for a power estimation will depend greatly
on the technology of the system, the architecture, and the
mathematical model employed. Creating a function which
can accurately describe the behavior of a physical device
is equivalent to the design of its digital twin. Which is
a problem outside of the scope of this work. However,
as shown in Equation 1, even the most precise power
model must be created from a composition of readily
available statistics. If there is information concerning the
operation of the system in these data, then this information
would also be embedded in the power estimation. So,
investigating the use of the raw statistics for emulating
power attacks can be considered as an equivalent problem.



1.05 1.055 1.06 1.065 1.07 1.075 1.08 1.085 1.09 1.095 1.1

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

clock period

core voltage

core IPC

d-cache overallMisses

(a) gem5 statistics

0 0.5 1 1.5 2 2.5
Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o
rm

a
liz

e
d
 a

m
p
lit

u
d
e

clock period
core voltage
dynamic power

mount & install TAboot

sl
ee

p 
10

0 
m

s
OP-TEE AES

1.2 GHz

100 MHz0.9 V

0.8 V

~2.5 W

(b) estimation of dynamic power

Figure 2: Statistics obtained from a full-system gem5 simulation of the architecture illustrated in Figure 1 with a
sampling period of 1E − 5. The simulation included the boot sequence, the initialization of OP-TEE and the execution
of optee_example_aes. The vertical axis shows the normalized amplitude since all the statistics have dynamic
ranges which differ significantly; we simply normalize each trace for display purposes.

3.2. Power dissipation analysis

When we transition from the analysis of a power
trace to the analysis of the statistics which may influence
the power trace, we are confronted with a significant
challenge: the volume of the data. In a regular gem5
simulation we can find over 1,000 different metrics to
analyze, which is time consuming. It is necessary to find
out which statistics carry the most significant information
for performing power analysis.

For this Subsection we used as case study the power
analysis of AES [36], since it is a well-known subject
in the literature. However, for a preliminary assessment,
obtaining enough data from multiple full executions of
AES seemed impractical. So, we simplified the algorithm

under analysis to the essential operations used in SCA
attacks. The pseudo-code for our simplified version of
AES is provided in Algorithm 1.

Algorithm 1 Algorithm under power analysis
Require: k, an 8-bit random integer
Require: SBOX, the substitution box of AES
Require: f, f ′, two frequencies of the core with f ′ < 2fs

for i = 0 to 255 do
cpu freq ← f ′ {Pull trigger}
SBOX(i⊕ k)
cpu freq ← f {Release trigger}
wait

end for



0.02 0.022 0.024 0.026 0.028 0.03
Time (s)

0

500

1000

1500

0x2B
0x7E
0xFF

0.02699 0.026995 0.027 0.027005 0.02701 0.027015
Time (s)

SBOX(0x00 ⊕
 k)

C
o
re

 f
re

q
u
e
n
cy

 (
M

H
z)

SBOX(0x01 ⊕
 k)

SBOX(0x02 ⊕
 k)

(a) sampling period is 2.5E − 7

0 0.02 0.04 0.06 0.08 0.1

Time (s)

0

500

1000

1500

C
o
re

 f
re

q
u
e
n
c
y
 (

M
H

z
)

0x2B

0x7E

SBOX(0x00 ⊕ 0x7E)

SBOX(0x01 ⊕ 0x7E)

SBOX(0x00 ⊕ 0x2B)

SBOX(0x01 ⊕ 0x2B)

SBOX(0x02 ⊕ 0x7E)

(b) sampling period is 4E − 8

Figure 3: A simple analysis of the clock statistics from multiple experiments illustrates how under regular conditions
(Figure 3a) the behavior of gem5 is consistent. However, when the core frequency is decreased (to 10MHz in this case)
the execution of the program becomes irregular (Figure 3b).

We selected two key values (0x2B, 0x7E) to ana-
lyze whether it was possible to find useful information
in the gem5 output. For that, we obtained the simulation
statistics of the platform illustrated in Figure 1 when
executing the program from Algorithm 1. From this, we
obtained over 800 files holding multiple metrics from
the simulation such as the number of instructions per
cycle and the number of cache accesses; with some post-
processing (removing incomplete and all-zero files) this
number was reduced to 150. Evidently, it was not prac-
tical to process all these data with the usual statistical
techniques employed for power analysis. So, we devised
a strategy to reduce the number of targets for study:

STEP 1: Auto-correlation. Compute the correlation
between every statistics file within a set (for example, the
set of all the statistics obtained from the use of the key
0x2B) to discard those with high similarity. Evidently,
if some measurements are similar, they will have a high
correlation and provide about the same information. We
found 151 stat pairs with a correlation coefficient over
0.95, involving 23 files. We were still left with over 100
files to evaluate. This is shown in Figure A.1.

STEP 2: Cross-correlation. Compute the correla-
tion between every statistics file in a set against the re-
spective statistics in a distinct set (that is, the statistics for
the key 0x2B against the statistics for the key 0x7E) as to
drop those with high similarity. From this experiment we
found only 30 stats with a correlation coefficient under 0.5
across sets, and only six stats with a correlation coefficient
under 0.3 across sets. This is shown in Figure A.2.

Then, we computed the correlation matrix of the
statistics for one of the keys against their own set (auto-
correlation) and the correlation matrix between the statis-
tics in both sets (cross-correlation. The first experiment
would give us information about the dependence between
statistics and the second would highlight which statistics
held more information related to the data processing.
These findings are detailed in Section A.

At first sight these results seemed promising as it was
possible to find which statistics were more interesting to

evaluate. However, in practice, when we set f ′ = 10MHz
and ts = 4E − 8, as to follow the sampling theorem,
the fidelity of the analysis decreased. As shown in Fig-
ure 3, the behavior of the simulation became inconsistent.
This could be further corroborated with an analysis of
the cross-correlation between statistics for different key
values. For the experiment in Figure 3a the main diagonal
of the correlation matrix showed a mean δ = 0.72 and
standard deviation σ = 0.24, while for the experiment
in Figure 3b the respective values were δ = 0.47 and
σ = 0.28. Notably, the correlation coefficient between the
clock signals decreased from 1.00 to 0.56. Another issue
we met was that for the experiment in Figure 3b we could
only capture 20 traces. This task took over 72h for each
key value and yielded 1TB of statistics in each case.

Despite these findings, we decided to test whether
it was possible to perform Test Vector Leakage assess-
ment [37] over the data (evaluating the complete sets of
stats). This should have helped to find out if the leakages
we saw were dependent or not of the secret value. For
this experiment, the secret values were the key values
0x2B and 0x7E (these values are found in the generic
AES key used to obtain test vectors) and we performed a
Student’s t-test to see if the leakages’ distribution
differed from one another. However, using the raw leak-
ages, no statistics overtook the leakage detection threshold
of 4.5. This confirmed the null hypothesis of the t-test
that both sets followed the same distribution. Supposing
leakages are independent of the key used, it seems impos-
sible to mount a successful differential attack using single
gem5 statistics. These negative results may change if we
can get a larger set of traces for each key, apply signal
processing techniques to improve the synchronization of
the traces, or consider attacks on various statistics at the
same time.

3.3. Timing analysis

Even though we were unable to show a clear rela-
tionship between the gem5 statistics and the secret key



0 0.005 0.01 0.015

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

clock period

core voltage

core IPC

d-cache overallMisses

(a) target frequency of 600MHz

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

clock period

core voltage

core IPC

d-cache overallMisses

(b) target frequency of 10MHz

Figure 4: A timing analysis of the execution of the program in Algorithm 2 with a sampling frequency of 25 MHz. The
vertical axis shows the normalized amplitude since all the statistics have dynamic ranges which differ significantly; we
simply normalize each trace for display purposes.

of AES, it was clear from Figure 2b that there was some
influence of the algorithm in the model. So, we decided to
evaluate whether we could perform simple power analysis
using the simulator.

It is well known that unprotected implementations of
algorithms like RSA [38] and elliptic curve cryptosystems
can leak the secret key via a simple timing analysis. This
is most commonly due to the use of naive multiplication
algorithms which perform branching operations as a func-
tion of the key value.

Given the glaring drawbacks of gem5 for simulating
complex operations we decided to skip on RSA. Instead,
we analyzed a simple binary-field double-and-add 1024-
bit multiplication implemented in C. The algorithm under
analysis for this scenario is provided in Algorithm 2. We
conducted two experiments to evaluate our hypothesis, see
Figure 4.

Algorithm 2 Algorithm under timing analysis
Require: g(t), an irreducible polynomial for K
Require: a, b ∈ K, two random integers
Require: f, f ′, two frequencies of the core with f ′ < 2fs

cpu freq ← f ′

for i = 0 to 5 do
a× b ∈ K

end for
cpu freq ← f

In the first experiment (Figure 4a) we set the core
frequency to 600 MHz and used an acquisition rate of
4E − 8. This allowed us to see the activity of the core
during processing. However, we could not find any timing
pattern which corresponded with the execution of the field
multiplications. So, we decreased the core frequency to
investigate whether following the sampling theorem was
necessary to find any timing behavior. But the result was
just the opposite. As illustrated in Figure 4b the statistics
produced were of inferior quality. For example, in the case
of the IPCs, the number of NAN values increased from

less than 1% to over 60%. Once again, we arrived at the
conclusion that gem5 simulations behave inconsistently
when low frequencies are used.

3.4. Covert channel attacks

SCAs do not only focus on retrieving side channel
information. Another vulnerability reported in the litera-
ture [39] is to use the power footprint of the platform
to transfer information covertly. In this attack model, the
adversary leverages the use of components in the platform
to produce a discernible pattern in the energy consump-
tion of the circuit. For example, hardware components,
accelerators, and memory elements can be activated or
accessed with a pattern to transfer a message. The receiver
is generally another component within the system which
would not normally be allowed to share a communica-
tions channel with the sender. In the presence of trusted
execution environments like OP-TEE, the exclusion level
of different peripherals or accelerators can mitigate such
attacks.

However, to which extent different components can
affect the power dissipation of the device is unknown until
tested. As we illustrated in Figure 2b, even the execution
of cryptographic components can produce a noticeable
impact on the statistics of the simulation. We conducted
an experiment to illustrate the issue, see Figure 5.

In this scenario we simply executed the
optee_example_aes with a basic “test message”
input once or twice, repeatedly. Each instance of the
example performed encryption and decryption requests
to the AES TA to encrypt the data and verify if
the computation was correct. As can be seen from
Figure 5a, the operations performed by the AES TA
have a significant impact on the statistics reported by
the simulator, even with a low sampling frequency.
The activation pattern is reflected even in simple power
models like the one included in Figure 5b. So, we expect
that using the OP-TEE trusted applications as power
wasters would have a similar effect on a physical device.



0 0.5 1 1.5 2

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

clock period

core voltage

core IPC

d-cache overallMisses

(a) gem5 statistics

0 0.5 1 1.5 2

Time (s)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
o

rm
a

liz
e

d
 a

m
p

lit
u

d
e

clock period

core voltage

dynamic power

(b) estimation of dynamic power

Figure 5: Statistics obtained from the execution of optee_example_aes with a sampling period of 1E − 5. The
vertical axis shows the normalized amplitude since all the statistics have dynamic ranges which differ significantly; we
simply normalize each trace for display purposes.

It is interesting to note that for this experiment we
didn’t request any frequency changes to the kernel. The
frequency variation seen in Figure 5 is the result of the
decisions taken by the schedutil governor of Linux.
But despite this interference the pattern produced to en-
code a secret message is clearly distinguishable and could
be easily decoded with the application of some filters and
basic heuristics.

4. Conclusions

In this paper we have investigated the feasibility of
using the gem5 simulator to emulate SCAs on micropro-
cessor systems. These devices are commonly found in a
wide range of platforms which makes them an interest-
ing case study. In recent years, their security resilience
against physical attacks has been scrutinized as this kind
of vulnerabilities has shown prowess for compromising
the security of such systems. It has been proven that
SCAs need more study with the emergence of novel attack
models like remote power analysis and covert channels.

The use of a simulator would allow us to solve im-
portant challenges found in the study of power attacks.
It would allow the security auditors to review a large
combination of computing platforms, architectures, and
security algorithms. All without the need to invest time
and resources in the creation of prototypes and the imple-
mentation of the solutions. gem5 has the potential to fill
this niche as a simulator which allows to study multiple
aspects of the platform. It can be used to derive precise
statistics about the operation of the core and then combine
them to obtain more complex estimators for the system.
However, some challenges must be overcome to improve
the usability of this platform:

• it is necessary to improve the production of statis-
tics to make their reporting more concise

• it is necessary to implement mechanisms for en-
abling or disabling statistics with fine granularity

While the current distribution of the simulator includes
some rudimentary support to achieve these goals, this

code could very well be considered legacy. Its use is
obscure, not documented, and requires us to manually
edit core scripts of the simulator. This is followed by a
recompilation of the software, which is a lengthy process.
Despite these issues, we investigated the possibility of
emulating power SCAs using gem5.

In relation to power analysis (correlation power anal-
ysis, simple power analysis) we showed a relationship
between the algorithms and the simulation statistics. This
allowed us to find certain statistics of interest. However,
upon further testing, we could not verify that they held
a statistical relationship with the secret key of the algo-
rithms under study. The main challenge for conducting
these experiments was the simulation time and the data
volume. As a possible solution we explored the idea of
decreasing the operational frequency of the virtual plat-
form, but we found out that gem5 has problems emulating
low-frequency systems. Alternatively, if it was possible
to select which statistics are produced it would not be
necessary to decrease the target frequency. Reducing the
number of statistics reported would also contribute to
reducing the simulation time. On the other hand, our
study on power-based covert channels clearly showed the
potential of the simulator for studying architectural and
software vulnerabilities.

Data availability

The multiple sets of statistics used in our exper-
iments as well as the scripts created for processing
the data can be accessed freely on https://github.com/
CarlosAndresLARA/power-gem5.

Acknowledgements

This work has been supported by the French gov-
ernment through the Agence Nationale de la Recherche
under project ARCHISEC (ANR-19-CE39-0008) and in
the framework of the France 2030 initiative under project
ARSENE (ANR-22-PECY-0004).

https://github.com/CarlosAndresLARA/power-gem5
https://github.com/CarlosAndresLARA/power-gem5


References

[1] D. J. Bernstein, “Understanding brute force.” ECRYPT STVL
Workshop on Symmetric Key Encryption, Apr 2005.

[2] R. Krulwich, “Which Is Greater, The Number Of Sand Grains On
Earth Or Stars In The Sky?.” NPR, Sept 2012. [Online] https:
//www.npr.org/sections/krulwich/2012/09/17/161096233.

[3] M. Bellare and P. Rogaway, “Introduction to Modern Cryptogra-
phy.” University of California, May 2005. [Online] https://web.cs.
ucdavis.edu/∼rogaway/classes/227/spring05/book/main.pdf.

[4] P. Kocher, J. Jaffe, and B. Jun, “Differential Power Analysis,”
in 19th Annual International Cryptology Conference (CRYPTO),
pp. 388–397, Springer, Aug 1999.

[5] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks:
Revealing the Secrets of Smart Cards. Advances in information
security, Springer, 2008.

[6] D. Agrawal, B. Archambeault, J. R. Rao, and P. Rohatgi, “The
EM Side—Channel(s),” in 4th International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES), pp. 29–45,
Springer, Aug 2003.

[7] J. G. Proakis and D. G. Manolakis, Digital Signal Processing:
Principles, Algorithms, and Applications. Prentice Hall, 1996.

[8] M. Zhao and G. E. Suh, “FPGA-Based Remote Power Side-
Channel Attacks,” in 2018 IEEE Symposium on Security and
Privacy, pp. 229–244, IEEE, May 2018.

[9] F. Schellenberg, D. R. E. Gnad, A. Moradi, and M. B. Tahoori,
“An Inside Job: Remote Power Analysis Attacks on FPGAs,” IEEE
Design & Test, vol. 38, pp. 58–66, Mar 2021.

[10] J. Gravellier, J.-M. Dutertre, Y. Teglia, and P. Loubet-Moundi,
“High-Speed Ring Oscillator based Sensors for Remote Side-
Channel Attacks on FPGAs,” in 2019 International Conference
on ReConFigurable Computing and FPGAs (ReConFig), pp. 1–8,
IEEE, Dec 2019.

[11] J. Gravellier, J.-M. Dutertre, Y. Teglia, and P. L. Moundi, “Side-
Line: How Delay-Lines (May) Leak Secrets from Your SoC,”
in 2021 International Workshop on Constructive Side-Channel
Analysis and Secure Design, pp. 3–30, Springer, Oct 2021.

[12] P. Chanak and I. Banerjee, “Internet-of-Things-Enabled SmartVil-
lages: An Overview,” IEEE Consumer Electronics Magazine,
vol. 10, pp. 12–18, Jul 2021.

[13] E. Prouff and M. Rivain, “Masking against side-channel attacks:
A formal security proof,” in 32nd Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques
(EUROCRYPT), pp. 142–159, Springer, May 2013.

[14] N. Veyrat-Charvillon, M. Medwed, S. Kerckhof, and F.-X. Stan-
daert, “Shuffling against Side-Channel Attacks: A Comprehensive
Study with Cautionary Note,” in 18th International Conference on
the Theory and Application of Cryptology and Information Security
(ASIACRYPT), pp. 740–757, Springer, Dec 2012.

[15] A. G. Bayrak, F. Regazzoni, P. Brisk, F.-X. Standaert, and P. Ienne,
“A First Step towards Automatic Application of Power Anal-
ysis Countermeasures,” in 48th Design Automation Conference,
pp. 230––235, ACM, Jun 2011.

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen,
K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The
Gem5 Simulator,” ACM SIGARCH Computer Architecture News,
vol. 39, pp. 1—-7, Aug 2011.

[17] L. France, F. Bruguier, M. Mushtaq, D. Novo, and P. Benoit,
“Implementing Rowhammer Memory Corruption in the gem5 Sim-
ulator,” in 2021 IEEE International Workshop on Rapid System
Prototyping, pp. 36–42, Oct 2021.

[18] P. Ayoub and C. Maurice, “Reproducing Spectre Attack with
Gem5: How To Do It Right?,” in 14th European Workshop on Sys-
tems Security, pp. 15––20, Association for Computing Machinery,
Apr 2021.

[19] Q. Forcioli, J.-L. Danger, C. Maurice, L. Bossuet, F. Bruguier,
M. Mushtaq, D. Novo, L. France, P. Benoit, S. Guilley, and
T. Perianin, “Virtual Platform to Analyze the Security of a System
on Chip at Microarchitectural Level,” in 5th Workshop on Security
of Software/Hardware Interfaces, pp. 96–102, IEEE, Sept 2021.

[20] T. Alves and D. Felton, “Trustzone: Integrated hardware and soft-
ware security,” Information Quarterly, vol. 3, no. 4, pp. 18–24,
2004.

[21] J. Bech, “How to create and run Trusted Applications on OP-
TEE,” Jan 2014. [Online] https://www.slideshare.net/linaroorg/
lcu14103-how-to-create-and-run-trusted-applications-on-optee.

[22] M. Arsath K F, V. Ganesan, R. Bodduna, and C. Rebeiro,
“PARAM: A Microprocessor Hardened for Power Side-Channel
Attack Resistance,” in 2020 IEEE International Symposium on
Hardware Oriented Security and Trust, pp. 23–34, Dec 2020.

[23] Y. Yao, T. Kathuria, B. Ege, and P. Schaumont, “Architecture Cor-
relation Analysis (ACA): Identifying the Source of Side-channel
Leakage at Gate-level,” in 2020 IEEE International Symposium on
Hardware Oriented Security and Trust, pp. 188–196, Dec 2020.

[24] D. Šijačić, J. Balasch, B. Yang, S. Ghosh, and I. Verbauwhede, “To-
wards efficient and automated side-channel evaluations at design
time,” Journal of Cryptographic Engineering, vol. 10, pp. 305–319,
Jun 2020.

[25] M. He, J. Park, A. Nahiyan, A. Vassilev, Y. Jin, and M. Tehranipoor,
“RTL-PSC: Automated Power Side-Channel Leakage Assessment
at Register-Transfer Level,” in IEEE 37th VLSI Test Symposium,
pp. 1–6, Jul 2019.

[26] A. Nahiyan, J. Park, M. He, Y. Iskander, F. Farahmandi, D. Forte,
and M. Tehranipoor, “SCRIPT: A CAD Framework for Power
Side-Channel Vulnerability Assessment Using Information Flow
Tracking and Pattern Generation,” ACM Transactions on Design
Automation of Electronic Systems, vol. 25, May 2020.

[27] V. Samadi Bokharaie and A. Jahanian, “Power side-channel leak-
age assessment and locating the exact sources of leakage at the
early stages of ASIC design process,” The Journal of Supercom-
puting, pp. 1–26, Jun 2022.

[28] S. A. Huss, M. Stöttinger, and M. Zohner, “Amasive: an adapt-
able and modular autonomous side-channel vulnerability evalua-
tion framework,” Number Theory and Cryptography, pp. 151–165,
2013.

[29] P. Slpsk, P. K. Vairam, C. Rebeiro, and V. Kamakoti, “Karna: A
Gate-Sizing based Security Aware EDA Flow for Improved Power
Side-Channel Attack Protection,” in 2019 IEEE/ACM International
Conference on Computer-Aided Design, pp. 1–8, Nov 2019.

[30] Y. Le Corre, J. Großschädl, and D. Dinu, “Micro-architectural
power simulator for leakage assessment of cryptographic soft-
ware on ARM Cortex-M3 processors,” in 9th International Work-
shop Constructive Side-Channel Analysis and Secure Design
(COSADE), pp. 82–98, Springer, Apr 2018.

[31] B. Gigerl, V. Hadzic, R. Primas, S. Mangard, and R. Bloem, “Coco:
Co-Design and Co-Verification of Masked Software Implementa-
tions on CPUs,” in 30th USENIX Security Symposium, pp. 1469–
1468, USENIX Association, Aug 2021.

[32] D. Walters, A. Hagen, and E. Kedaigle, “SLEAK: A side-channel
leakage evaluator and analysis kit,” Tech. Rep. AD1107774,
MITRE CORP BEDFORD MA, Jan 2014.

[33] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible
DRAM simulator,” IEEE Computer Architecture Letters, vol. 15,
pp. 45–49, Mar 2015.

[34] A. Herrera, “Running Trusted Firmware-A on gem5.” arm Commu-
nity, Jun 2020. [Online] https://community.arm.com/arm-research/
b/articles/posts/running-trusted-firmware-a-on-gem5.

[35] T. E. Hansen, “ARM Power Modelling.” gem5 Documenta-
tion, Nov 2022. [Online] https://www.gem5.org/documentation/
learning gem5/part2/arm power modelling/.

[36] NIST, “FIPS 197: Advanced Encryption Standard (AES),” Stan-
dard, National Institute of Standards and Technology, Nov 2001.
[Online] https://csrc.nist.gov/publications/detail/fips/197/final.

[37] T. Schneider and A. Moradi, “Leakage Assessment Methodology,”
in 17th International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 495–513, Springer, Sept 2015.

[38] NIST, “FIPS 186-5: Digital Signature Standard (DSS),” Standard,
National Institute of Standards and Technology, Feb 2023. [Online]
https://csrc.nist.gov/publications/detail/fips/186/5/final.

[39] D. R. E. Gnad, C. D. K. Nguyen, S. H. Gillani, and M. B.
Tahoori, “Voltage-Based Covert Channels Using FPGAs,” ACM
Transactions on Design Automation of Electronic Systems, vol. 26,
pp. 1–25, Jun 2021.

https://www.npr.org/sections/krulwich/2012/09/17/161096233
https://www.npr.org/sections/krulwich/2012/09/17/161096233
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/~rogaway/classes/227/spring05/book/main.pdf
https://www.slideshare.net/linaroorg/lcu14103-how-to-create-and-run-trusted-applications-on-optee
https://www.slideshare.net/linaroorg/lcu14103-how-to-create-and-run-trusted-applications-on-optee
https://community.arm.com/arm-research/b/articles/posts/running-trusted-firmware-a-on-gem5
https://community.arm.com/arm-research/b/articles/posts/running-trusted-firmware-a-on-gem5
https://www.gem5.org/documentation/learning_gem5/part2/arm_power_modelling/
https://www.gem5.org/documentation/learning_gem5/part2/arm_power_modelling/
https://csrc.nist.gov/publications/detail/fips/197/final
https://csrc.nist.gov/publications/detail/fips/186/5/final


A. Correlation analysis for the statistics

We performed a correlation analysis for a re-
duced set of statistics (sorted alphabetically). From the
autocorrelation shown in Figure A.1 we could fig-
ure out (by looking outside the main diagonal) that
there seem to be some statistics with high similarity
(SimdAdd, SimdAlu, SimdCmp) which may carry re-
dundant information.

From the cross-correlation shown in Figure A.2
we can figure out (also by looking at the main di-
agonal) that there are statistics with low similarity

(FloatMisc,No OpClass) which may be influenced by
data dependency. In the cross-correlation matrix we can
observe a slight asymmetry resulting from the analysis
of equivalent pairs produced by taking one statistic from
each set (e.g. corr(setA.statA, setB.statB) vs
corr(setB.statA, setA.statB)).

It is also interesting to note how the clock statistic
(which carries the alignment information) has a high
cross-correlation value, which lends validity to the pro-
posed method for segmenting the traces.

1

NaN

-0.31

-0.29

-0.07

-0.32

-0.14

-0.28

-0.28

-0.29

-0.05

-0.07

-0.35

-0.01

-0.35

-0.02

-0.05

-0.34

-0.15

-0.02

-0.02

-0.01

-0.01

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

-0.31

NaN

1

0.62

0.25

0.84

0.12

0.61

0.79

0.8

0

0.09

0.82

0.02

0.9

0.03

0.2

0.82

0.2

0.02

0.02

0.01

0.01

-0.29

NaN

0.62

1

0.26

0.54

0.79

0.94

0.34

0.36

0.12

0.3

0.91

0.02

0.77

0.1

0.24

0.85

0.68

0.08

0.04

0.04

0.04

-0.07

NaN

0.25

0.26

1

0.28

0.37

0.2

0.2

0.22

0.09

0.22

0.29

0

0.26

-0.01

0.3

0.28

0.08

-0.02

0.01

0.01

0.01

-0.32

NaN

0.84

0.54

0.28

1

0.12

0.48

0.95

0.96

-0.01

0.07

0.83

0

0.9

-0.01

0.08

0.77

0.06

-0.02

-0.01

-0.01

-0.01

-0.14

NaN

0.12

0.79

0.37

0.12

1

0.75

-0.12

-0.09

0.22

0.38

0.57

0.02

0.35

0.12

0.26

0.5

0.72

0.1

0.05

0.05

0.05

-0.28

NaN

0.61

0.94

0.2

0.48

0.75

1

0.29

0.31

0.15

0.29

0.88

0.03

0.75

0.12

0.28

0.85

0.68

0.15

0.05

0.05

0.05

-0.28

NaN

0.79

0.34

0.2

0.95

-0.12

0.29

1

1

-0.04

0

0.67

0

0.8

-0.03

0.04

0.61

-0.15

-0.03

-0.01

-0.01

-0.01

-0.29

NaN

0.8

0.36

0.22

0.96

-0.09

0.31

1

1

0

0.08

0.69

0

0.81

-0.03

0.04

0.63

-0.13

-0.02

0

0

0

-0.05

NaN

0

0.12

0.09

-0.01

0.22

0.15

-0.04

0

1

0.41

0.09

0.01

0.07

0.01

0.02

0.1

0.19

0.05

0.08

0.08

0.08

-0.07

NaN

0.09

0.3

0.22

0.07

0.38

0.29

0

0.08

0.41

1

0.24

0

0.15

0.02

0.07

0.21

0.3

0.06

0.1

0.11

0.11

-0.35

NaN

0.82

0.91

0.29

0.83

0.57

0.88

0.67

0.69

0.09

0.24

1

0.02

0.95

0.07

0.21

0.94

0.48

0.07

0.03

0.03

0.03

-0.01

NaN

0.02

0.02

0

0

0.02

0.03

0

0

0.01

0

0.02

1

0.01

0

0

0.01

0.01

0

0

0

0

-0.35

NaN

0.9

0.77

0.26

0.9

0.35

0.75

0.8

0.81

0.07

0.15

0.95

0.01

1

0.05

0.19

0.94

0.4

0.08

0.02

0.02

0.02

-0.02

NaN

0.03

0.1

-0.01

-0.01

0.12

0.12

-0.03

-0.03

0.01

0.02

0.07

0

0.05

1

0.55

0.1

0.1

0

0.01

0.01

0.01

-0.05

NaN

0.2

0.24

0.3

0.08

0.26

0.28

0.04

0.04

0.02

0.07

0.21

0

0.19

0.55

1

0.23

0.19

-0.01

-0.01

-0.01

-0.01

-0.34

NaN

0.82

0.85

0.28

0.77

0.5

0.85

0.61

0.63

0.1

0.21

0.94

0.01

0.94

0.1

0.23

1

0.53

0.07

0.04

0.04

0.04

-0.15

NaN

0.2

0.68

0.08

0.06

0.72

0.68

-0.15

-0.13

0.19

0.3

0.48

0.01

0.4

0.1

0.19

0.53

1

0.11

0.08

0.08

0.08

-0.02

NaN

0.02

0.08

-0.02

-0.02

0.1

0.15

-0.03

-0.02

0.05

0.06

0.07

0

0.08

0

-0.01

0.07

0.11

1

0.3

0.3

0.31

-0.02

NaN

0.02

0.04

0.01

-0.01

0.05

0.05

-0.01

0

0.08

0.1

0.03

0

0.02

0.01

-0.01

0.04

0.08

0.3

1

0.98

0.97

-0.01

NaN

0.01

0.04

0.01

-0.01

0.05

0.05

-0.01

0

0.08

0.11

0.03

0

0.02

0.01

-0.01

0.04

0.08

0.3

0.98

1

0.98

-0.01

NaN

0.01

0.04

0.01

-0.01

0.05

0.05

-0.01

0

0.08

0.11

0.03

0

0.02

0.01

-0.01

0.04

0.08

0.31

0.97

0.98

1

clock

BTBHitRatio

BTBHits

BTBLookups

RASIncorrect

RASUsed

condIncorrect

condPredicted

indirectHits

indirectLookups

indirectMispredicted

indirectMisses

lookups

FloatMisc

IntAlu

IntDiv

IntMult

MemRead

MemWrite

No_OpClass

SimdAdd

SimdAlu

SimdCmp

Figure A.1: Correlation within the set of statistics generated from the usage of the key 0x2B.

1

NaN

-0.31

-0.28

-0.07

-0.32

-0.14

-0.28

-0.28

-0.29

-0.05

-0.07

-0.34

-0.01

-0.35

-0.02

-0.05

-0.34

-0.15

-0.02

-0.02

-0.01

-0.01

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

NaN

-0.31

NaN

0.9

0.58

0.28

0.8

0.13

0.56

0.76

0.76

0.01

0.1

0.77

0.01

0.84

0.02

0.2

0.76

0.18

0

0.02

0.02

0.01

-0.28

NaN

0.58

0.89

0.27

0.52

0.73

0.86

0.32

0.35

0.15

0.29

0.84

0.01

0.73

0.09

0.24

0.81

0.67

0.09

0.05

0.05

0.04

-0.07

NaN

0.28

0.27

0.41

0.36

0.23

0.23

0.3

0.31

0.06

0.13

0.34

0

0.34

0.01

0.12

0.32

0.1

-0.01

0.01

0.01

0.01

-0.32

NaN

0.8

0.52

0.35

0.91

0.13

0.46

0.88

0.88

0

0.11

0.77

0

0.84

0

0.14

0.71

0.07

-0.01

-0.01

-0.01

-0.01

-0.14

NaN

0.13

0.73

0.23

0.13

0.87

0.71

-0.09

-0.06

0.22

0.33

0.54

0.01

0.37

0.12

0.21

0.51

0.72

0.12

0.06

0.06

0.06

-0.28

NaN

0.56

0.86

0.23

0.46

0.71

0.89

0.27

0.29

0.16

0.28

0.81

0.02

0.7

0.1

0.27

0.8

0.67

0.11

0.05

0.05

0.05

-0.28

NaN

0.76

0.32

0.3

0.88

-0.08

0.27

0.92

0.92

-0.04

0.04

0.63

0

0.74

-0.03

0.1

0.57

-0.13

-0.03

-0.01

-0.01

-0.01

-0.29

NaN

0.76

0.35

0.31

0.88

-0.06

0.29

0.92

0.92

-0.02

0.08

0.64

0

0.75

-0.02

0.11

0.58

-0.11

-0.02

0

0

0

-0.05

NaN

0.01

0.15

0.07

0

0.22

0.16

-0.04

-0.02

0.44

0.28

0.11

0.01

0.07

0.01

0.03

0.11

0.19

0.06

0.09

0.1

0.09

-0.07

NaN

0.1

0.29

0.13

0.11

0.33

0.29

0.04

0.08

0.28

0.47

0.25

0

0.19

0.03

0.06

0.23

0.28

0.06

0.09

0.09

0.09

-0.34

NaN

0.77

0.84

0.33

0.77

0.54

0.81

0.63

0.64

0.11

0.25

0.92

0.01

0.89

0.06

0.24

0.88

0.48

0.06

0.03

0.03

0.03

-0.01

NaN

0.01

0.02

0

0

0.02

0.02

0

0

0.01

0

0.01

0.35

0.01

0

0

0.01

0.02

0

0

0

0

-0.35

NaN

0.84

0.73

0.33

0.84

0.37

0.7

0.74

0.76

0.07

0.19

0.89

0.01

0.93

0.04

0.21

0.87

0.37

0.05

0.03

0.03

0.03

-0.02

NaN

0.01

0.09

0.01

-0.01

0.11

0.1

-0.03

-0.02

0.02

0.03

0.06

0

0.04

0.55

0.32

0.08

0.09

0

0.01

0.01

0.01

-0.05

NaN

0.2

0.23

0.12

0.14

0.21

0.27

0.1

0.11

0.03

0.07

0.24

0

0.21

0.31

0.48

0.24

0.14

0

0

0

0

-0.34

NaN

0.77

0.8

0.31

0.71

0.51

0.8

0.57

0.58

0.1

0.23

0.88

0.01

0.87

0.08

0.25

0.9

0.52

0.05

0.04

0.04

0.04

-0.14

NaN

0.18

0.66

0.09

0.07

0.71

0.67

-0.13

-0.1

0.2

0.28

0.48

0.01

0.37

0.09

0.15

0.52

0.82

0.12

0.08

0.08

0.08

-0.02

NaN

0

0.08

0

-0.01

0.11

0.1

-0.03

-0.02

0.07

0.06

0.06

0

0.05

0

-0.01

0.05

0.12

0.39

0.22

0.21

0.22

-0.02

NaN

0.02

0.05

0.02

0

0.06

0.05

-0.01

0

0.09

0.09

0.03

0

0.03

0.01

0

0.05

0.08

0.21

0.7

0.68

0.68

-0.01

NaN

0.02

0.05

0.02

0

0.06

0.05

-0.01

0

0.09

0.09

0.03

0

0.03

0.01

0

0.05

0.08

0.21

0.68

0.66

0.66

-0.01

NaN

0.02

0.04

0.02

0

0.06

0.05

-0.01

0

0.09

0.09

0.03

0

0.03

0.01

0

0.05

0.08

0.21

0.68

0.66

0.67

clock

BTBHitRatio

BTBHits

BTBLookups

RASIncorrect

RASUsed

condIncorrect

condPredicted

indirectHits

indirectLookups

indirectMispredicted

indirectMisses

lookups

FloatMisc

IntAlu

IntDiv

IntMult

MemRead

MemWrite

No_OpClass

SimdAdd

SimdAlu

SimdCmp

Figure A.2: Correlation between two sets of statistics generated from the usage of the keys 0x2B and 0x7E.


	Introduction
	State of the Art
	Methods
	The simulated platform
	Power dissipation analysis
	Timing analysis
	Covert channel attacks

	Conclusions
	References
	 A: Correlation analysis for the statistics

