
Work in progress: a formally verified shadow stack for RISC-V

Matthieu BATY (matthieu.baty@inria.fr), Guillaume HIET, Pierre WILKE

Background — 1/4

"A formally verified shadow stack for RISC-V"

Shadow stacks are an example of a security mechanism. Security mechanisms help
with enforcing security properties:
I Confidentiality
I Integrity
I Availability

In this work, we consider hardware-based mechanisms for mitigating software-based
attacks.

2 / 31

Background — 2/4

"A formally verified shadow stack for RISC-V"

:
I Emerging technology
I Open standard
I Numerous open source tools and implementations

3 / 31

Background — 3/4

"A formally verified shadow stack for RISC-V"

Formal methods:
I Give strong guarantees
I Exhaustive, unlike test suites

We use proof assistants, which are expressive but not automatic.

4 / 31

Background — 4/4

An instruction set architecture refers to the interface of a processor. Which
instructions are available? What is their semantics?

Microarchitecture refers to the organization of an implementation of an architecture.
Is it pipelined? How large is the L1 cache?

We consider proofs at the microarchitectural level, not at the architectural level.

5 / 31

Motivation

CompCert

seL4

Processor
7

X

X

We can’t assume the correctness of the hardware

6 / 31

Implementing a processor – 1/3

RTL model
Processor

specification

Security properties

Executable

BitstreamProcessor
specification

Security mechanism
specification

Security mechanism
specification

I The specification describes the behavior that an implementation must adopt
I Usually not formal

7 / 31

Implementing a processor – 2/3

Processor
specification RTL model

Security properties

Executable

BitstreamProcessor
specification

Security mechanism
specification

Security mechanism
specification

Implementation

I An RTL (Register Transfer Level) description of the circuit is used, with:
I A set of registers characterizing the processor
I Signals flowing between registers (can be combined)

I E.g. Verilog, VHDL, Chisel, . . .

8 / 31

Implementing a processor – 3/3

Processor
specification RTL model

Security properties

Executable

BitstreamProcessor
specification

Security mechanism
specification

Security mechanism
specification

Implementation
Synthesis

Simulatio
n

9 / 31

Implementing a processor – 3/3

Processor
specification RTL model

Security properties

Executable

BitstreamProcessor
specification

Security mechanism
specification

Security mechanism
specification

Implementation
Synthesis

Simulatio
n

How can we integrate a security mechanism to a processor?

9 / 31

Integration of a security mechanism

RTL model

Processor
specification

Security properties

Security mechanism
specification Executable

BitstreamProcessor
specification

Security mechanism
specification

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

10 / 31

Integration of a security mechanism

RTL model

Processor
specification

Security properties

Security mechanism
specification Executable

BitstreamProcessor
specification

Security mechanism
specification

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Why should we trust our security mechanism?

10 / 31

Verification of a security mechanism

RTL model

Processor
specification

Security mechanism
specification Executable

Bitstream

Security properties

Processor
specification

Security mechanism
specification

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification

11 / 31

Verification of a security mechanism

RTL model

Processor
specification

Security mechanism
specification Executable

Bitstream

Security properties

Processor
specification

Security mechanism
specification

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification
Problem: languages such as Verilog don’t have a formal semantics

11 / 31

Formal methods and hardware
I Languages for formalizing specifications:

I Example: Sail1 for instruction set architectures
I Microarchitecture out of their scope

I Formal hardware description languages:
Name Active? Stable? Verified? Logic Inspired by Output
Kami2 7 X X Coq BlueSpec Verilog
Cava3 X 7 7 Coq Lava Verilog
CakeML HW4 X X X HOL Verilog Verilog
Kôika5 X X X Coq BlueSpec Verilog

1"Detailed Models of Instruction Set Architectures: From Pseudocode to Formal Semantics", A. Arm-
strong et al., ARW 2018

2"The Verified IoT Lightbulb: Connecting Hardware and Software in a Simple Embedded System", A.
Erbsen et al., PLDI 2020

3https://github.com/project-oak/silveroak
4"Verified compilation on a verified processor", A. Lööw et al., PLDI 2019
5"The Essence of Bluespec", T. Bourgeat et al., PLDI 2020

12 / 31

Formal methods and hardware
I Languages for formalizing specifications:

I Example: Sail1 for instruction set architectures
I Microarchitecture out of their scope

I Formal hardware description languages:
Name Active? Stable? Verified? Logic Inspired by Output
Kami2 7 X X Coq BlueSpec Verilog
Cava3 X 7 7 Coq Lava Verilog
CakeML HW4 X X X HOL Verilog Verilog
Kôika5 X X X Coq BlueSpec Verilog

1"Detailed Models of Instruction Set Architectures: From Pseudocode to Formal Semantics", A. Arm-
strong et al., ARW 2018

2"The Verified IoT Lightbulb: Connecting Hardware and Software in a Simple Embedded System", A.
Erbsen et al., PLDI 2020

3https://github.com/project-oak/silveroak
4"Verified compilation on a verified processor", A. Lööw et al., PLDI 2019
5"The Essence of Bluespec", T. Bourgeat et al., PLDI 2020

12 / 31

The Kôika language

I "The Essence of BlueSpec", PLDI 2020, Thomas Bourgeat et al.
I Open source: https://github.com/mit-plv/koika
I Hardware Description Language defined within Coq
I There exists an implementation of a RISC-V processor developed in this

language:
I Unprivileged RV32I (typical for IOT)
I 4 stages
I No interrupts

13 / 31

Verification of a security mechanism with Kôika

RTL model

Processor
specification

Security mechanism
specification Executable

Bitstream

Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification

14 / 31

Verification of a security mechanism with Kôika

Kôika model RTL model

Processor
specification

Security mechanism
specification Executable

Bitstream

Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification

Generation

14 / 31

Verification of a security mechanism with Kôika

Kôika model RTL model

Processor
specification

Security mechanism
specification Executable

Bitstream

Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification

Generation

Equivalence

14 / 31

A first example: Collatz sequence

registers = [r]

rule divide =
let v = read0 r in
if iseven(v) then

write0 r (v >> 1)

rule multiply =
let v = read1 r in
if isodd(v) then

write1 r (v + v + v + 1)

Registers characterize the state of the
model.

Rules describe how the registers are up-
dated.

For a pipelined processor, you would have
one rule per stage.

15 / 31

Kôika’s design

Parallelism matters in modern hardware and Kôika was built for it:
I Rules run in one cycle
I They are atomic: either they succeed or they are skipped
I They are parallel
I All the necessary control mechanisms are generated implicitly by the compiler:

for instance, the stalling behavior is implicit

IF ID EX WB

16 / 31

Ports and conflicts

[x x x][x x][x x x]

X X X

X 7

X X X
wr0 a wr0 b wr1 c

wr1 a wr0 b

wr1 a wr0 d wr1 b

17 / 31

Ports and conflicts

[x x x][x x][x x x]

X X X

X 7

X X X
wr0 a wr0 b wr1 c

wr1 a wr0 b

wr1 a wr0 d wr1 b

17 / 31

Ports and conflicts

[x x x][x x][x x x]

X X X

X 7

X X X
wr0 a wr0 b wr1 c

wr1 a wr0 b

wr1 a wr0 d wr1 b

17 / 31

Ports and conflicts

[x x x][x x][x x x]

X X X

X 7

X X X
wr0 a wr0 b wr1 c

wr1 a wr0 b

wr1 a wr0 d wr1 b

17 / 31

Ports and conflicts

[x x x][x x][x x x]

X X X

X 7

X X X
wr0 a wr0 b wr1 c

wr1 a wr0 b

wr1 a wr0 d wr1 b

17 / 31

Ports and conflicts

[x x x][x x][x x x]

X X X

X 7

X X X
wr0 a wr0 b wr1 c

wr1 a wr0 b

wr1 a wr0 d wr1 b

The order in which the effects of the rules are considered is important

17 / 31

Ports and conflicts

[x x][x x x][x x x]

7 X X

X X 7 X X

wr0 a wr0 b wr1 c

wr1 a wr0 b wr1 a wr0 d wr1 b

The order in which the effects of the rules are considered is important

17 / 31

Summary

We now have what it takes to build a first security mechanism:
I A formal hardware description language
I A RISC-V processor model

How can we integrate a security mechanism?

18 / 31

Summary

We now have what it takes to build a first security mechanism:
I A formal hardware description language
I A RISC-V processor model

How can we integrate our security mechanism?

18 / 31

Choosing a security mechanism

We consider an attacker which can pass arbitrary input to a program. Such an
attacker can hijack the control-flow by overwriting the return address of a procedure
through a buffer overflow.

This is an important problem in practice:
I "SoK: Eternal War in Memory", Szekeres et al., 2013 IEEE Symposium on

Security and Privacy
I Out-of-bounds writes: first software weakness in the CWE Top 25

19 / 31

Choosing a security mechanism

There are countermeasures to control-flow hijacking:
I Stack canaries
I Bounds checking

Most of those are compiler-based. They come with some downsides:
I Performance cost
I Need to be enabled explicitly

A classical hardware-based countermeasure is shadow stacks (as implemented in
Intel CET).

20 / 31

Security mechanism: shadow stack

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parametersf1 return address

f2 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parametersf1 return address

f2 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parameters

f3 local variables
f3 return address
f3 parameters

f1 return address
f2 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parameters

f3 local variables
f3 return address
f3 parameters

f1 return address
f2 return address
f3 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parameters

f3 local variables
f3 return address
f3 parameters

f1 return address
f2 return address
f3 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

?=

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parameters

f3 local variables
f3 return address
f3 parameters

f1 return address
f2 return address
f3 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

X

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parameters

f3 local variables
f3 return address
f3 parameters

f1 return address
f2 return address
f3 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parametersf1 return address

f2 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

?=

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parametersf1 return address

f2 return address

Shadow stack Stack

21 / 31

Security mechanism: shadow stack

7

f1 local variables
f1 return address
f1 parameters

f2 local variables
f2 return address
f2 parametersf1 return address

f2 return address

Shadow stack Stack

21 / 31

Implementation of the shadow stack

We keep our implementation as simple as possible:
I In case of an error, the processor halts
I Hardware mechanism with no software-side configuration
I The size of the shadow stack is fixed

We are interested in the following properties:
I Return to a modified return address ⇒ halt processor
I Underflow or overflow ⇒ halt processor
I Otherwise ⇒ behavior preserved

22 / 31

Summary

We now have what we need for our first proofs:
I A formal hardware description language
I A RISC-V processor with a shadow stack security mechanism
I A set of properties to verify

How can we prove this mechanism correct?

23 / 31

Summary

We now have what we need for our first proofs:
I A formal hardware description language
I A RISC-V processor with a shadow stack security mechanism
I A set of properties to verify

How can we prove this mechanism correct?

23 / 31

Proofs on Kôika models

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification

Generation

Equivalence

Verification

24 / 31

Proofs on Kôika models

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification

Generation

Equivalence

Verification

Kôika is a high-level language with a complex semantics.

24 / 31

Proofs on Kôika models

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

V
erification

Generation

Equivalence

Verification

A low-level language with a simple semantics is better suited to reasoning.

24 / 31

Proofs on Kôika models

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

24 / 31

Explicit form

registers = [a, b]

rule gcd =
let v_a = read a in
let v_b = read b in
if v_a != 0 then

if v_a > v_b then
write0 a v_b;
write0 b v_a

else
write0 a v_a - v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
let v_a = read a in
let v_b = read b in
if v_a != 0 then

if v_a > v_b then
write0 a v_b;
write0 b v_a

else
write0 a v_a - v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if v_a != 0 then

if v_a > v_b then
write0 a v_b;
write0 b v_a

else
write0 a v_a - v_b

v_a := read a
v_b := read b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if v_a != 0 then

if v_a > v_b then
write0 a v_b;
write0 b v_a

else
write0 a v_a - v_b

v_a := read a
v_b := read b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

if comp2 then
write0 a v_b;
write0 b v_a

else
write0 a sub

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

if comp2 then
write0 a v_b;
write0 b v_a

else
write0 a sub

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

write0 a
(if comp2 then v_b else sub)

if comp2 then
write0 b v_a

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

write0 a e1
if comp2 then

write0 b v_a

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

write0 a e1
if comp2 then

write0 b v_a

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

write0 a e1
write0 b

(if comp2 then v_a)

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

write0 a e1
write0 b

(if comp2 then v_a else v_b)

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

write0 a e1
write0 b e2

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
if comp1 then

write0 a e1
write0 b e2

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
write0 a (if comp1 then e1)
write0 b (if comp1 then e2)

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
write0 a (if comp1 then e1 else v_a)
write0 b (if comp1 then e2 else v_b)

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b

25 / 31

Explicit form

registers = [a, b]

rule gcd =
write0 a w_a
write0 b w_b

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b
w_a := if comp1 then e1 else v_a
w_b := if comp1 then e2 else v_b

25 / 31

Explicit form

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b
w_a := if comp1 then e1 else v_a
w_b := if comp1 then e2 else v_b

How can we prove properties about models in this form?

25 / 31

Explicit form

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b
w_a := if comp1 then e1 else v_a <- final value of a
w_b := if comp1 then e2 else v_b <- final value of b

How can we prove properties about models in this form?

25 / 31

Explicit form

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b
w_a := if comp1 then e1 else v_a <- final value of a
w_b := if comp1 then e2 else v_b <- final value of b

How can we prove properties about models in this form?

25 / 31

Structure of a proof

Let’s consider the following property :

When the value of a is 0, the registers are not updated during a cycle.

We can exploit the information that a = 0 at the beginning of a cycle.

26 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_a := read a
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b
w_a := if comp1 then e1 else v_a
w_b := if comp1 then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_a := 0
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b
w_a := if comp1 then e1 else v_a
w_b := if comp1 then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_a := 0
v_b := read b
comp1 := v_a != 0
comp2 := v_a > v_b
sub := v_a - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then v_a else v_b
w_a := if comp1 then e1 else v_a
w_b := if comp1 then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

--
v_b := read b
comp1 := 0 != 0
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := if comp1 then e1 else 0
w_b := if comp1 then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
comp1 := 0 != 0
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := if comp1 then e1 else 0
w_b := if comp1 then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
comp1 := false
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := if comp1 then e1 else 0
w_b := if comp1 then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
--
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := if false then e1 else 0
w_b := if false then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := if false then e1 else 0
w_b := if false then e2 else v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := 0
w_b := v_b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := 0 <- final value of a
w_b := v_b <- final value of b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
comp2 := 0 > v_b
sub := 0 - v_b
e1 := if comp2 then v_b else sub
e2 := if comp2 then 0 else v_b
w_a := 0 <- final value of a
w_b := v_b <- final value of b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

v_b := read b
w_a := 0 <- final value of a
w_b := v_b <- final value of b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

--
w_a := 0 <- final value of a
w_b := read b <- final value of b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

w_a := 0 <- final value of a
w_b := read b <- final value of b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

w_a := 0 <- final value of a
w_b := read b <- final value of b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

w_a := 0 <- final value of a
w_b := read b <- final value of b

27 / 31

Structure of a proof

When the value of a is 0, the registers are not updated during a cycle.

w_a := 0 <- final value of a

27 / 31

Structure of a proof

We have to prove that all the simplifications we apply (value replacement, expression
simplification, . . .) are correct.

Most of the tactics that we developed are not specific to our model and can be reused.

28 / 31

Current state of our work

We have some intermediate proofs:
I The halt state is a sink state
I Overflows ⇒ halt

The main element we are missing is a way of exploiting partial information about the
value of registers (some simplifications only depend on the value of some bits in a word,
and we don’t always know the value of each bit).

29 / 31

Recap

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

30 / 31

Recap

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

30 / 31

Recap

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

30 / 31

Recap

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

30 / 31

Recap

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

30 / 31

Recap

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

30 / 31

Recap

Kôika model RTL model

Processor
specification

Shadow stack
specification Executable

Bitstream

Explicit form Security properties

Security mechanism
specification

Implementatio
n

Implementation

Synthesis

Simulatio
n

Generation

Equivalence

E
qu

iv
al
en
ce

G
en
er
at
io
n

Verification

30 / 31

Future works

We want to reuse the tooling we developed on more complex examples. In particular,
we want to consider interactions with the software.

We are considering the following mechanisms:
I More realistic shadow stacks (context switching)
I Entirely different mechanisms traditionally implemented in software

31 / 31

