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almost impossible}
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Exploits speculative 
execution

Almost all modern CPUs 
 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks: 
Exploiting Speculative Execution — S&P 2019 9
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Size of array A

Branch predictor

Prediction based on branch 
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state
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void f(int x)  
 if (x < A_size) 
   y = B[A[x]]

What is in A[128]?

    1) Train branch predictor

    2) Prepare cache

    3) Run with x = 128

    4) Extract from cache

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]
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Speculative leaks at program level

Execution mode

Models how instructions 
are executed

Observer mode+
Capture attacker’s 

observational power
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Building sound leakage abstractions

Contracts specify which 
program executions a 

microarchitectural adversary 
can distinguish

Goals 
• Capture HW security guarantees  

• Basis for secure programming
Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts for secure speculation — IEEE S&P 2021 
https://arxiv.org/abs/2006.03841 18

Hardware-software  
contract
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 Execution Mode · Observer Mode

How are programs executed? What is visible about the 
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Detecting speculative leaks
mov  rax, A_size 
mov  rcx, x 
cmp  rcx, rax 
jae  END 
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END:

x64 to μASM
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https://spectector.github.io

Spectector
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unnecessary LFENCEs 

MSVC is insecure — leaks checked 
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https://arxiv.org/abs/1910.08607


1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions



A problem of (missing) abstractions

!???
36



A problem of (missing) abstractions

Hardware-software  
contract36



Challenges

37

We need precise and simple hardware-software  
contracts for security



Challenges

37

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale 
to real-world ISAs + other microarchitectural side-effects 



Challenges

37

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale 
to real-world ISAs + other microarchitectural side-effects 

Challenge 2: Techniques for testing/verifying if hardware complies 
with a given contract (or even inferring compliant contract!)



Challenges

37

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale 
to real-world ISAs + other microarchitectural side-effects 

Challenge 2: Techniques for testing/verifying if hardware complies 
with a given contract (or even inferring compliant contract!)

Challenge 3: Contract-aware analysis and secure compilation 
techniques to enforce program security 



Collaborators
• Boris Köpf @ Microsoft Research 

• Jan Reineke @ Saarland University 

• José F. Morales @ IMDEA Software  

• Pepe Vila @ IMDEA Software 

• Andrés Sánchez @ IMDEA Software  

• Marco Patrignani @ University of Trento

38

Supported by Intel Strategic 
Research Alliance (ISRA)  
“Information Flow Tracking 
across the Hardware-
Software Boundary”



39

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale 
to real-world ISAs + other microarchitectural side-effects 

Challenge 2: Techniques for testing/verifying if hardware complies 
with a given contract (or even inferring compliant contract!)

Challenge 3: Contract-aware analysis and secure compilation 
techniques to enforce program security 


