
Principled foundations for
microarchitectural security

Marco Guarnieri
IMDEA Software Institute

SILM, 06-06-2022 @ Genova

Contacts:

1

marco.guarnieri@imdea.org

@MarcoGuarnier1

2

2Picture of Intel “Haswell-E” Eight Core CPU

2Picture of Intel “Haswell-E” Eight Core CPU

2Picture of Intel “Haswell-E” Eight Core CPU

2Picture of Intel “Haswell-E” Eight Core CPU

2Picture of Intel “Haswell-E” Eight Core CPU

2Picture of Intel “Haswell-E” Eight Core CPU

2Picture of Intel “Haswell-E” Eight Core CPU

Attacks exploit microarchitectural side-
effects to compromise security!

3Picture of Intel “Haswell-E” Eight Core CPU

Attacks exploit microarchitectural side-
effects to compromise security!

3Picture of Intel “Haswell-E” Eight Core CPU

Attacks exploit microarchitectural side-
effects to compromise security!

Intel has admitted that patches to fix the

Spectre and Meltdown chip flaws could slow

machines "in some cases”

3Picture of Intel “Haswell-E” Eight Core CPU

Attacks exploit microarchitectural side-
effects to compromise security!

Intel has admitted that patches to fix the

Spectre and Meltdown chip flaws could slow

machines "in some cases”

What is the problem?

4

What is the problem?
Microarchitectural leakage

depends on specific
hardware details

4

What is the problem?
Microarchitectural leakage

depends on specific
hardware details

No faithful, precise models
capturing microarchitectural

leakage
4

What is the problem?
Microarchitectural leakage

depends on specific
hardware details

No faithful, precise models
capturing microarchitectural

leakage

}
4

What is the problem?
Microarchitectural leakage

depends on specific
hardware details

No faithful, precise models
capturing microarchitectural

leakage

Writing secure code is

almost impossible}
4

P + = Secure

P
v2+ = Insecure

A problem of (missing) abstractions

A problem of (missing) abstractions

A problem of (missing) abstractions

!???

What is a good abstraction?

Software Hardware

6

What is a good abstraction?

Software Hardware

C 
o 
n 
t 
r 
a 
c 
t

Hardware-software
contracts for security

6

What is a good abstraction?

Software Hardware

C 
o 
n 
t 
r 
a 
c 
t

Hardware-software
contracts for security

ISA + X

6

What is a good abstraction?

Software Hardware

C 
o 
n 
t 
r 
a 
c 
t

Hardware-software
contracts for security

ISA + X
Capture all possible

microarchitectural leaks!

6

What is a good abstraction?

Software Hardware

C 
o 
n 
t 
r 
a 
c 
t

Hardware-software
contracts for security

ISA + X
Secure programming

independently
of specific

microarchitecture

Capture all possible
microarchitectural leaks!

6

What is a good abstraction?

Software Hardware

C 
o 
n 
t 
r 
a 
c 
t

Hardware-software
contracts for security

ISA + X
Secure programming

independently
of specific

microarchitecture

Capture all possible
microarchitectural leaks!

6

Implement
optimizations
compliant with

contract

In this talk

7

In this talk
HW/SW contracts for secure

speculation

7

In this talk
HW/SW contracts for secure

speculation

Contracts + Hardware

7

In this talk
HW/SW contracts for secure

speculation

Contracts + Hardware

Contracts + Software
7

1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions

1. Speculative execution attacks

1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions

1. Speculative execution attacks1. Speculative execution attacks

Exploits speculative
execution

Almost all modern CPUs
 are affected

P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, Y. Yarom — Spectre Attacks:
Exploiting Speculative Execution — S&P 2019 9

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

Prediction based on branch
history & program structure

if (x < A_size)
 y = B[A[x]]

Speculative execution + branch prediction

10

Size of array A

Branch predictor

Prediction based on branch
history & program structure

Wrong predicton? Rollback changes!
Architectural (ISA) state

Microarchitectural state

Spectre v1

11

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

11

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

11

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

11

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

11

What is in A[128]?
A_size=16

B[0]B[1] ...B

Secret data

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

12

A_size=16
B[0]B[1] ...B

Secret data

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

12

A_size=16
B[0]B[1] ...B

Secret data

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

12

A_size=16
B[0]B[1] ...B

Secret data

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Secret data

B[A[128]]
]

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Secret data

B[A[128]]
]

Depends on
A[128]

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Secret data

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Secret data

B[A[128]]
]

Depends on
A[128]

Persistent across
speculations

Spectre v1

void f(int x)
 if (x < A_size)
 y = B[A[x]]

What is in A[128]?

 1) Train branch predictor

 2) Prepare cache

 3) Run with x = 128

 4) Extract from cache

12

B[A[128]]

A_size=16
B[0]B[1] ...B B[A[128]]

Secret data

1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions

Speculative leaks at program level

Guarnieri, Köpf, Morales, Reineke, Sánchez — Spectector: Principled detection for speculative leaks —
IEEE S&P 2020 — https://arxiv.org/abs/1812.08639 14

https://arxiv.org/abs/1812.08639

Speculative leaks at program level

Guarnieri, Köpf, Morales, Reineke, Sánchez — Spectector: Principled detection for speculative leaks —
IEEE S&P 2020 — https://arxiv.org/abs/1812.08639 14

https://arxiv.org/abs/1812.08639

Speculative leaks at program level

Guarnieri, Köpf, Morales, Reineke, Sánchez — Spectector: Principled detection for speculative leaks —
IEEE S&P 2020 — https://arxiv.org/abs/1812.08639 14

+
Speculative
semantics

https://arxiv.org/abs/1812.08639

Speculative leaks at program level

Execution mode Observer mode+

Guarnieri, Köpf, Morales, Reineke, Sánchez — Spectector: Principled detection for speculative leaks —
IEEE S&P 2020 — https://arxiv.org/abs/1812.08639 14

+
Speculative
semantics

https://arxiv.org/abs/1812.08639

Speculative leaks at program level

Execution mode

Models how instructions
are executed

Observer mode+

Guarnieri, Köpf, Morales, Reineke, Sánchez — Spectector: Principled detection for speculative leaks —
IEEE S&P 2020 — https://arxiv.org/abs/1812.08639 14

+
Speculative
semantics

https://arxiv.org/abs/1812.08639

Speculative leaks at program level

Execution mode

Models how instructions
are executed

Observer mode+
Capture attacker’s

observational power
Guarnieri, Köpf, Morales, Reineke, Sánchez — Spectector: Principled detection for speculative leaks —
IEEE S&P 2020 — https://arxiv.org/abs/1812.08639 14

+
Speculative
semantics

https://arxiv.org/abs/1812.08639

Modeling speculation

15

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Fixed speculative window

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Fixed speculative window

Rollback speculation

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Fixed speculative window

Rollback speculation
Non-speculative

Speculative

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Fixed speculative window

Rollback speculation
Non-speculative

Speculative

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Fixed speculative window

Rollback speculation
Non-speculative

Speculative

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Fixed speculative window

Rollback speculation
Non-speculative

Speculative

Modeling speculation

15

Save program state before
executing branch instructions

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end Mispredict all branch instructions

Fixed speculative window

Rollback speculation
Non-speculative

Speculative

Leakage into microarchitecture

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Leakage into microarchitecture

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Leakage into microarchitecture

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Leakage into microarchitecture

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

start
pc 2

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

start
pc 2

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

load A+x

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

load A+x

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

load B+A[x]

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

load B+A[x]

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

rollback
pc 4

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

Leakage into microarchitecture

Attacker observes:
- locations of memory accesses
- branch/jump targets
- start/end speculative execution

 Inspired by “constant-time”
requirements

16

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Non-speculative

Speculative

1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions

Building sound leakage abstractions

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841 18

Building sound leakage abstractions

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841 18

Hardware-software  
contract

Building sound leakage abstractions

Contracts specify which
program executions a

microarchitectural adversary
can distinguish

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841 18

Hardware-software  
contract

Building sound leakage abstractions

Contracts specify which
program executions a

microarchitectural adversary
can distinguish

Goals
• Capture HW security guarantees

• Basis for secure programming
Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841 18

Hardware-software  
contract

Contracts

19

Contract
ISA extended with
observations

Contracts

19

Contract
ISA extended with
observations

Contracts
Observations expose

security-relevant events

19

Contract
ISA extended with
observations

Contracts
Observations expose

security-relevant events

Contract traces: (p, σ)

19

Contract
ISA extended with
observations

Contracts
Observations expose

security-relevant events

Contract traces: (p, σ)

Hardware
Processor+attacker
 observations

19

Contract
ISA extended with
observations

Contracts
Observations expose

security-relevant events

Contract traces: (p, σ)

Hardware
Processor+attacker
 observations

Hardware traces: (p, σ)

19

Contract
ISA extended with
observations

Contracts
Observations expose

security-relevant events
Hw traces model attacker’s

observational power

Contract traces: (p, σ)

Hardware
Processor+attacker
 observations

Hardware traces: (p, σ)

19

Contract
ISA extended with
observations

Contracts

Contract satisfaction
Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′ (p, σ)= (p, σ′) (p, σ) = (p, σ′)

Observations expose
security-relevant events

Hw traces model attacker’s
observational power

Contract traces: (p, σ)

Hardware
Processor+attacker
 observations

Hardware traces: (p, σ)

19

Contract
ISA extended with
observations

Contracts

Contract satisfaction
Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′ (p, σ)= (p, σ′) (p, σ) = (p, σ′)

Observations expose
security-relevant events

Hw traces model attacker’s
observational power

Contract traces: (p, σ)

Hardware
Processor+attacker
 observations

Hardware traces: (p, σ)

19

Contract
ISA extended with
observations

Contracts

Contract satisfaction
Hardware satisfies contract if for all programs and arch.
states , : if then

p
σ σ′ (p, σ)= (p, σ′) (p, σ) = (p, σ′)

Observations expose
security-relevant events

Hw traces model attacker’s
observational power

Contract traces: (p, σ)

Hardware
Processor+attacker
 observations

Hardware traces: (p, σ)

19

Contracts for secure speculation

20

Contracts for secure speculation

20

Contract =
 Execution Mode · Observer Mode

Contracts for secure speculation

20

Contract =
 Execution Mode · Observer Mode

At ISA level

Contracts for secure speculation

20

Contract =
 Execution Mode · Observer Mode

How are programs executed?

At ISA level

Contracts for secure speculation

20

Contract =
 Execution Mode · Observer Mode

How are programs executed? What is visible about the
execution?

At ISA level

seq — sequential execution
spec — mispredict branch
instructions

Contracts for secure speculation

21

Contract =
 Execution Mode · Observer Mode

seq — sequential execution
spec — mispredict branch
instructions

Contracts for secure speculation

21

Contract =
 Execution Mode · Observer Mode

pc — only program counter
ct — pc + address of loads/stores
arch — ct + loaded values

Contracts for secure speculation

22

Contract =
 Execution Mode · Observer Mode

pc — only program counter
ct — pc + address of loads/stores
arch — ct + loaded values

Contracts for secure speculation

22

Contract =
 Execution Mode · Observer Mode

A lattice of contracts

23

Seq-ct

Spec-ct

Spec-arch

Seq-arch

⊥

⊤

…..

Le
ss

 L
ea

ka
ge

A lattice of contracts

23

Seq-ct

Spec-ct

Spec-arch

Seq-arch

⊥

⊤

Leaks “everything”

…..

Le
ss

 L
ea

ka
ge

A lattice of contracts

23

Seq-ct

Spec-ct

Spec-arch

Seq-arch

⊥

⊤

Leaks “everything”

Leaks
“nothing”

…..

Le
ss

 L
ea

ka
ge

A lattice of contracts

23

Seq-ct

Spec-ct

Spec-arch

Seq-arch

⊥

⊤

Leaks “everything”

Leaks
“nothing”

Leaks addresses
of non-speculative

loads/stores/
instruction fetches

…..

Le
ss

 L
ea

ka
ge

A lattice of contracts

23

Seq-ct

Spec-ct

Spec-arch

Seq-arch

⊥

⊤

Leaks “everything”

Leaks
“nothing”

Leaks addresses
of non-speculative

loads/stores/
instruction fetches

Leaks all data
accessed non-
speculatively

…..

Le
ss

 L
ea

ka
ge

A lattice of contracts

23

Seq-ct

Spec-ct

Spec-arch

Seq-arch

⊥

⊤

Leaks “everything”

Leaks
“nothing”

Leaks addresses
of non-speculative

loads/stores/
instruction fetches

Leaks all data
accessed non-
speculatively

Leaks addresses of
all loads/stores/

instruction fetches

…..

Le
ss

 L
ea

ka
ge

A lattice of contracts

23

Seq-ct

Spec-ct

Spec-arch

Seq-arch

⊥

⊤

Leaks “everything”

Leaks
“nothing”

Leaks addresses
of non-speculative

loads/stores/
instruction fetches

Leaks all data
accessed non-
speculatively

Leaks addresses of
all loads/stores/

instruction fetches

…..

Le
ss

 L
ea

ka
ge

Model different security guarantees! "

1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions

Hardware countermeasures

25

Hardware countermeasures

25

Hardware countermeasures

25

Hardware countermeasures

25

Hardware countermeasures

25

Hardware countermeasures

25

Hardware countermeasures

25

Security guarantees?

Hardware countermeasures

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

26

Hardware countermeasures

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

26

Non-speculative

Speculative

Hardware countermeasures

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

26

Non-speculative

Speculative

Hardware countermeasures

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Delay loads until they are no
longer speculative

[Sakalis et al., ISCA’19]

26

Non-speculative

Speculative

Hardware countermeasures

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Delay loads until they are no
longer speculative

[Sakalis et al., ISCA’19]

Taint speculatively loaded data
+ delay tainted loads

[STT and NDA, MICRO’19]
26

Non-speculative

Speculative

Hardware countermeasures

1. y = A[x]
2. if (x < A_size)
3. z = B[y]
4. end

2727

Hardware countermeasures

1. y = A[x]
2. if (x < A_size)
3. z = B[y]
4. end

2727

Non-speculative

Speculative

Hardware countermeasures

1. y = A[x]
2. if (x < A_size)
3. z = B[y]
4. end

2727

Delay loads until they are no
longer speculative

[Sakalis et al., ISCA’19]

Non-speculative

Speculative

Hardware countermeasures

1. y = A[x]
2. if (x < A_size)
3. z = B[y]
4. end

Taint speculatively loaded data
+ delay tainted loads

[STT and NDA, MICRO’19]
2727

Delay loads until they are no
longer speculative

[Sakalis et al., ISCA’19]

Non-speculative

Speculative

Hardware countermeasures

1. y = A[x]
2. if (x < A_size)
3. z = B[y]
4. end

Taint speculatively loaded data
+ delay tainted loads

[STT and NDA, MICRO’19]
2727

Delay loads until they are no
longer speculative

[Sakalis et al., ISCA’19]

Countermeasures block different leaks!

Non-speculative

Speculative

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking
Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

3-stage pipeline with speculative
and out-of-order (OoO) execution
Formalized as operational
semantics

Attacker observes part of
microarchitectural state

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

3-stage pipeline with speculative
and out-of-order (OoO) execution
Formalized as operational
semantics

Attacker observes part of
microarchitectural state

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

No speculative and out-of-
order execution

Instructions executed in-order

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

NS

No speculative and out-of-
order execution

Instructions executed in-order

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

NS

Delaying loads until all
sources of speculation are

resolved

Sakalis et al., ISCA'19

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

LD

NSLD

Delaying loads until all
sources of speculation are

resolved

Sakalis et al., ISCA'19

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO

LD

NSLD

Taint speculative data

Propagate taint through
computation

Delay tainted operations

STT and NDA, MICRO’19

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO TT

LD

NSTTLD

Taint speculative data

Propagate taint through
computation

Delay tainted operations

STT and NDA, MICRO’19

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

Guarantees

28

Seq-ct

Spec-ct
Spec-arch

Seq-arch
Seq/spec-ct/pc

OoO

NS

LD

TT

Vanilla out-of-order (OoO)
CPU
In-order CPU
(no speculative execution)

OoO CPU+load delay

OoO CPU+taint tracking

OoO TT

LD

NSTTLD

Taint speculative data

Propagate taint through
computation

Delay tainted operations

STT and NDA, MICRO’19

Characterize and compare security guarantees! "

Guarnieri, Köpf, Reineke, Vila — Hardware-software contracts
for secure speculation — IEEE S&P 2021
https://arxiv.org/abs/2006.03841

1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions

#
Program CPU with speculative

execution

+ = Secure?

Speculative leaks in programs

30

Guarnieri, Köpf, Morales, Reineke, Sánchez — Spectector: Principled detection for speculative leaks —
IEEE S&P 2020 — https://arxiv.org/abs/1812.08639

https://arxiv.org/abs/1812.08639

Leakage(P,)Leakage(P,)

Speculative non-interference
Program P is speculatively non-interferent if

=
Information leaked by
executing P without
speculative execution

Information leaked by
executing P with

speculative execution

31

Leakage(P,)Leakage(P,)

Speculative non-interference
Program P is speculatively non-interferent if

=

31

Executed under seq-ct

Leakage(P,)Leakage(P,)

Speculative non-interference
Program P is speculatively non-interferent if

=

31

Executed under seq-ct Executed under spec-ct

Leakage(P,)Leakage(P,)

Speculative non-interference
Program P is speculatively non-interferent if

=

31

 For all program states and : σ σ′

Leakage(P,)Leakage(P,)

Speculative non-interference
Program P is speculatively non-interferent if

=

31

 For all program states and : σ σ′

seq-ct(P,) = seq-ct(P,) 	 σ σ′

Leakage(P,)Leakage(P,)

Speculative non-interference
Program P is speculatively non-interferent if

=

31

 For all program states and : σ σ′

seq-ct(P,) = seq-ct(P,) 	 σ σ′

spec-ct(P,) = spec-ct(P,)σ σ′ ⇒

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

x=128
A_size=16
A[128]=1

Non-speculative

Speculative

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

x=128
A_size=16
A[128]=1

Non-speculative

Speculative

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

load A+128

load A+128

x=128
A_size=16
A[128]=1

Non-speculative

Speculative

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

x=128
A_size=16
A[128]=1

Non-speculative

Speculative

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

load B+1

load B+0

x=128
A_size=16
A[128]=1

Non-speculative

Speculative

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

load B+1

load B+0

x=128
A_size=16
A[128]=1

Non-speculative

Speculative

Speculative non-interference

32

1. if (x < A_size)
2. y = A[x]
3. z = B[y]
4. end

x=128
A_size=16
A[128]=0

load B+1

load B+0

x=128
A_size=16
A[128]=1

Spectre v1 violates SNI

Non-speculative

Speculative

Detecting speculative leaks
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

33

Detecting speculative leaks
mov rax, A_size
mov rcx, x
cmp rcx, rax
jae END
mov rax, A[rcx]
mov rax, B[rax]

 rax <- A_size
 rcx <- x
 jmp rcx≥rax, END
L1: load rax, A + rcx
 load rax, B + rax
END:

x64 to μASM

Symbolic
execution

Check for speculative leaks

L1:

33

https://spectector.github.io

Spectector

Case study: compiler mitigations

34
Patrignani, Guarnieri — Exorcising spectres with secure compilers — CCS 2021
https://arxiv.org/abs/1910.08607

https://arxiv.org/abs/1910.08607

Case study: compiler mitigations

34

Injection of LFENCEs
LFENCE stops speculation

Compilers (ICC, MSVC) insert
LFENCE after branch instructions

Patrignani, Guarnieri — Exorcising spectres with secure compilers — CCS 2021
https://arxiv.org/abs/1910.08607

https://arxiv.org/abs/1910.08607

if (x < A_size)
 lfence
 y = B[A[x]]

Case study: compiler mitigations

34

Injection of LFENCEs
LFENCE stops speculation

Compilers (ICC, MSVC) insert
LFENCE after branch instructions

if (x < A_size)
 y = B[A[x]]

Patrignani, Guarnieri — Exorcising spectres with secure compilers — CCS 2021
https://arxiv.org/abs/1910.08607

https://arxiv.org/abs/1910.08607

if (x < A_size)
 lfence
 y = B[A[x]]

Case study: compiler mitigations

34

Injection of LFENCEs
LFENCE stops speculation

Compilers (ICC, MSVC) insert
LFENCE after branch instructions

if (x < A_size)
 y = B[A[x]]

Patrignani, Guarnieri — Exorcising spectres with secure compilers — CCS 2021
https://arxiv.org/abs/1910.08607

https://arxiv.org/abs/1910.08607

if (x < A_size)
 lfence
 y = B[A[x]]

Case study: compiler mitigations

34

Injection of LFENCEs
LFENCE stops speculation

Compilers (ICC, MSVC) insert
LFENCE after branch instructions

if (x < A_size)
 y = B[A[x]]

Patrignani, Guarnieri — Exorcising spectres with secure compilers — CCS 2021
https://arxiv.org/abs/1910.08607

ICC enforces SNI (security proof) +
unnecessary LFENCEs

MSVC is insecure — leaks checked
with Spectector

https://arxiv.org/abs/1910.08607

1. Speculative execution attacks
Outline

2. Modeling speculative leaks
3. Hardware-software contracts for secure speculation

4. What about hardware?
5. What about software?
6. Conclusions

A problem of (missing) abstractions

!???
36

A problem of (missing) abstractions

Hardware-software  
contract36

Challenges

37

We need precise and simple hardware-software  
contracts for security

Challenges

37

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale
to real-world ISAs + other microarchitectural side-effects

Challenges

37

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale
to real-world ISAs + other microarchitectural side-effects

Challenge 2: Techniques for testing/verifying if hardware complies
with a given contract (or even inferring compliant contract!)

Challenges

37

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale
to real-world ISAs + other microarchitectural side-effects

Challenge 2: Techniques for testing/verifying if hardware complies
with a given contract (or even inferring compliant contract!)

Challenge 3: Contract-aware analysis and secure compilation
techniques to enforce program security

Collaborators
• Boris Köpf @ Microsoft Research

• Jan Reineke @ Saarland University

• José F. Morales @ IMDEA Software

• Pepe Vila @ IMDEA Software

• Andrés Sánchez @ IMDEA Software

• Marco Patrignani @ University of Trento

38

Supported by Intel Strategic
Research Alliance (ISRA)
“Information Flow Tracking
across the Hardware-
Software Boundary”

39

We need precise and simple hardware-software  
contracts for security

Challenge 1: (Languages and abstractions for) contracts that scale
to real-world ISAs + other microarchitectural side-effects

Challenge 2: Techniques for testing/verifying if hardware complies
with a given contract (or even inferring compliant contract!)

Challenge 3: Contract-aware analysis and secure compilation
techniques to enforce program security

