The Case for System Integrity Monitors
based on A Hardware Memory Snooper

CySeclLab (Cyber Systems Security Research Lab)
https://cysec.kr

GSIS (Graduate School of Information Security)
School of Computing, KAIST (Korea Advanced Institute of Science and Technology)

Professor Brent ByungHoon Kang, Ph.D.

https://cysec.kr

Trusted Computing
Vigilare

KIMON

ATRA

Table of Contents

Trusted Computing

Applications and Platform Systems

prpIication)

- J

Operating System

Sfes

I System
Administrator

Vulnerable Applications and Malwares

prpIication

=
\ Al

Operating System

Sfes

I System
Administrator

Vulnerable Applications, Systems and Malwares

prpIication

= =
_ (I)
Operating System i JANRGGIINY
=
L1 o System

Administrator

Sfes

Vulnerable Applications, Systems and Malwares

Is the world without malware possible?

(Application

Data

_)
Operating System .énp- -
T o System

Administrator

t[l[ll]l]l]j

Platform System Integrity Monitor

HOST SYSTEM A KI-MON
=~ || VIGILARE
EXTERNAL
MONITORS
ATRA
:’x‘:z o):/o‘;o ATTACK

http://breakthroughs.kaist.ac.kr/?post_no=163

KI-MON and VIGILARE

e Deployed in Samsung Smart TV as part of its
security system (GAIA)

Anti-Emulation Detection (2018) and Heap
Exploitation Defense (2017)

e Samsung Software Security Solution

Bus snooping-based attack detection/

Entire System

’ Tasam | Integrated as
1 part of

- ?‘:: ‘; i System Bus Samsung’s

¢ ¢ security
’ HE "’ solution

http://breakthroughs.kaist.ac.kr/?post_no=163

Vulnerable Applications, Systems and Malwares

Can we have make computation safe despite the presence of malware?

(Application

Data

_)
Operating System .ﬁnp- -
T o System

Administrator

t[l[ll]l]l]j

Secure Isolation of Application

prpIication

Critical

Untrusted Platform System ‘m

-
-
(-
(-
(-
TITIT]
i

Fu
Ml System
Administrator

10

Secure Isolation of Application

(Application)
- Secret l critical
Dat Code
=
—

Untrusted Platform System g

T 4§| System
00ooo

Administrator

1

Data-at-Rest Protection

Application

Dat

&

(o)
L

Critical
Code

=
A o

Untrusted Platform System gl |

v KD
73 00000
P —

T o System

Administrator

12

Data-in-Transit Protection

Application
E. Secret i critical

Dat Code

Operating System

i

Data-in-Transit /

l-\ (:H
Secre
Data |\

Application

0
(v) 9

Secret I} critical
Dat Code

Operating System

L/

13

Data-in-Use Protection

Application)
Code

\ [

i System
Administrator

Data-in-Use Protection: Confidential Computing

&

‘ Application
. Secret i critical

(o)
L

Dat Code

A o

Operating System

Al

i System
Administrator

15

Trusted Confidential Computing

ilili|
-

i

16

Roadmap: System Integrity Monitors

= Research Overview
= Operating Systems Integrity Monitoring

= Vigilare for Static Kernel Region
= ACM CCS 2012

= KI-Mon for Dynamic Kernel Region
= Usenix Security 2013

= ATRA: Address Translation Redirection Attack
= ACM CCS 2014

KAIST 17 CySeclLab

Rootkit and Kernel Integrity
Protection (Vigilare)

Graduate School of Information Security, School of Computing, KAIST
Brent Byunghoon Kang

KAIST CySecLab

Rootkit Attacks on OS Kernels

= Rootkits control victimized OS to report false information

= Detection/Recovery attempts from the layers above the
kernel are not trustworthy

High-Level Device Driver(Ring 2)

.
7>

Low-Level Device Driver(Ring 1)

KAIST 19 CySeclLab

Kernel Integrity Monitoring Platforms

= Kernel rootkit detection therefore requires a safe execution
environment outside of OS kernel

Hypervisor-based External Hardware-based

KAIST 20 CySeclLab

Protecting Integrity of OS Kernels

= Hypervisor / VMM based approaches

= Recently, approaches based on hypervisors have gained popularity.
= SB CFI, Kernel Guard, OSck, Livewire

= However, as hypervisors are becoming more and more complex,
hypervisors themselves are exposed to numerous software
vulnerabilities

= E.g., Bluepill, DMA code injection, Subvirt

= Hardware based approaches
= Copilot, PCl hardware, Static kernel region
= HyperSentry, Intel SMM, Stop host to check integrity

KAIST 21 CySeclLab

Snapshot Analysis Monitoring

= Usually assisted by some type of trusted component that
= Enables saving of the memory contents into a snapshot
= Perform an analysis to find the traces of a rootkit attack

= Some Examples
= Copilot

= A custom Peripheral Component Interconnect (PCl) card to create
snapshots of the memory via Direct Memory Access (DMA)

= HyperSentry

= The System Management Mode (SMM) are utilized to implement the
snapshot- based kernel integrity monitors

KAIST 29 CySeclLab

Snapshot-based Monitoring

= Inherent weakness
» |nspect the snapshots collected over a certain interval,
= Missing the evanescent changes in between the intervals.

= Vulherable to transient attack
= Not leave persistent traces in memory contents,
= Using only momentary and transitory changes.

KAIST 73 CySeclLab

Transient Attack

= Difficulties of Detecting Transient Attacks

] Not Detected
S A
i I I
"@ I 1 Detected
K [[
§ tactive l ‘I
= [[
) > | "
Compromised :: =ﬂ=
' tinactive [

Normal p——————— | i

KAIST 54 CySeclLab

Transient Attack / Scrubbing Attack

= Difficulties of Detecting Transient Attacks

E A .\'ét etected Not Detected
= [I
S [I
D
E tactive :: }:
: = | "
Compromised :: S T }:
timactive [
"(=J_)‘I I
I
[[
[I
[[
[I >
e > 1ime
Pmonitor

KAIST)5 CySeclLab

Addressing Transient Attack

= Raising the rate of snapshot-taking
* increase the probability of detection.

* Frequent snapshot-taking
» increased overhead to the host system.

= Randomizing the snapshot interval
» The detection rate would greatly depend on luck

KAIST 26 CySeclLab

Transient Attack / Scrubbing Attack

= Raising the rate of snapshot taking.

E A Detected Detected
e i] I I I I
s I I I H I
§ I tactive‘l “: I [::
= [|
- e | |_¥ |
Compromised [“: P - ::
I I 3 L [[
i 1: tzﬁa ttttt I I ::
I
Normal =¥|I {: 1 : :: ::
[I I I i [
I I I I I I
[I “: I [::
I I I I I | >
4_"“ Tings
Pmonitor

KAIST 7 CySeclLab

Vigilare : Snoop-based Kernel Integrity Monitor

= Overcomes the limitations of existing snapshot-based kernel integrity
monitoring.

= Monitors the operation of the host by “snooping” the bus traffic
= Of the host system

= From a separate independent system module

= First Prototype:
= Static immutable region integrity checking

Keep your heart with all vigilance, for from it flow the springs of life. Proverbs 4:23 (ESV)
Because the Lord kept vigil that night to bring them out of Egypt, on this night all the Israelites
are to keep vigil to honor the Lord for the generations to come. Exodus 12:42 (NIV)

KAIST)8 CySeclLab

Design and Implementation

Pl LT TR Y ST T e s g I P T T T T
I SnoopMon I Host System |
| |
I| Verifier I |
| 2 | !
| Z €—> Leon3 | I Leon3 <€<—> 2 |
S-E.%»-\ € > Snooper : — A%’ |
I 28 € [! 1=
2 Z8 1
I e< | I ' ‘ =41
[}
I3) I : "
- = athiAED | I AHB2APB = I
] £ bridge | : Q
= I bridge 2 2o
I 3 I =B
| 2 «> % I ! g :
=
! § S Peripherals [! Peripherals 2 I
a = z
| I ! : I
I ————————————————— p==] L ————————————

KAIST 29 CySeclLab

Snooper for Static Immutable Region

= Selective Bus-traffic Collection

= Snooper must be designed with a selective bus-traffic collection
algorithm

Entire System

S stem Bus
Traffic P

o e

KAIST 30 CySecLab

Design and Implementation

= Handling Bursty Traffic

= AMBA2 hardware

= 4 byte address, 4byte data per traffic
= |t takes more than one cycle for one traffic

= Filter out uninteresting traffic with hardware module

= Support Static Immutable Region
= All read traffic is filtered
= All write traffic that is not in immutable region is filtered

KAIST 31 CySeclLab

Design and Implementation

= Monitoring target: static/immutable regions
= Kernel codes
= System call table
» Interrupt descriptor table

= Physical address of targets
= Physical locations of static regions are not changed after bootstrap
» Find locations on bootstrap and use them for kernel runtime

KAIST 37 CySeclLab

Design and Implementation

¢ Prototypes

e Host system (monitoree)
e 50MHz Leon 3 processor (SPARC V8)
e 64MB SDRAM
e Basis of SnoopMon
e SnoopMon (Vigilare)
e Host system + Snooper + Verifier
e SnapMon (Snapshot based approach)
e Host system + DMA + Verifier

e Hash accelerator hardware
e 5seconds->1.3ms

KAIST 33 CySeclLab

Experimental Result

e Performance

e STREAM benchmark is widely used for measuring the memory
bandwidth of a computer system

e Tuned STREAM_BENCH
o float ->int

e Transient attack

e Synthesized rootkit example that performs transient attack to static
immutable region

e E.g., system call table with size of 1MB

KAIST 34 CySecLab

Experiment: Performance Degradation

KAIST

120
100
8o
60
40
20

Normalized Performance (%)
o

W copy Mscale madd mtriad ®Wavg

SnapMon
5oms

SnapMon
100mMs

SnapMon
5ooms

Type of Monitor

35

SnapMon
1000MSs

SnoopMon

CySecLab

Experiment: Transient Attack Detection

KAIST

120

[EY
(o}
o

8o
60
40
20

Detected Attack (%)

o]

Hi10 M50 HM100 Hg5oo H1000

SnoopMon SnapMon SnapMon SnapMon SnapMon
5oms 100ms 5ooms 1000mMs

Type of Monitor

36 CySecLab

Conclusion: Snooper for Static Kernel Region

e Vigilare, a snoop-based monitoring scheme with hardware
support

e Snooper for static immutable region integrity

e Snapshot approach has fundamental trade-off
e Longer interval, less performance degradation
e but, less ability to detect transient attacks
e Shorter interval, more performance degradation

e Snooping based approach can
e Detect all transient attacks on immutable static regions
e No performance degradation

KAIST 37 CySecLab

Challenges in Monitoring Dynamic Kernel Region

e Dynamic-location of data structure
e Objects are allocated runtime
e Addresses are obtained multiple steps of point traversal
e Monitoring regions are no longer fixed

e Dynamic-size data structures
e Number of nodes or entries flexibly changes as in
e linked lists or queues.

e Dynamic-content
e Legitimate changes from the normal operations of kernel

e Additional periodic snapshots in parallel with the integrity

- monitoring, frequent enough tosgeep track of changes CySecLab

Rootkit and Kernel Integrity
Protection (KIMON)

Graduate School of Information Security, School of Computing, KAIST
Brent Byunghoon Kang

KAIST CySecLab **

Existing external hardware-based monitors

® 1. Copilot (Sec ‘04)

® Presented snapshot-based kernel static region monitoring

® Simplistic hash comparison scheme

® 2. Vigilare (CCS’12)

® Presented snoop-based monitoring that detects all write traffic to kernel static region
including transient attacks

® Qvercome high performance overhead of high-frequency snapshots with snoop-based
monitoring

® Existing Works are Limited to

® Static regions of kernel

® No ability to handle mutable kernel object

KAIST 40 CySeclLab

Mutable Kernel Objects in Kernel Dynamic Region

Virtual

OxXFFFFFFFS

9xCc0000000

memory

layout

KAIST

pr——

1GB Kernel
Memory
Space

A

3GB User
Memory
Space

©x00000000

/

- N
Fix-mapped
Linear

Addresses

Persistent
Kernel
Mappings

vmalloc
area

P

41

I ——
Physical

Memory
Mapping

VMALLOC_END

VMALLOC START.

Kernel
|Dynamic
Region

|

high_memory -

PAGE_OFFSET

Kernel
Static
Region

CySeclLab

Monitoring Mutable Kernel Objects

KAIST

Kernel Object

Attacker’s
Function

Unknown

e

Function
@ exffoefffeo
void (*Func)
(int,int) —

Legitimate
Functions

______ -»

“-\\\\\\\‘

Known
Kernel Function
@ oxffo00020

Value
Verification

Needed

42

Known
Kernel Function
@ oxffooee40

CySeclLab

Monitoring Mutable Kernel Objects

System
Memory

Still prese

a
-
-
-
-
.
-

Normal Normal Rootkit @] Normal
LKM LKM LKW LKM

Semantic verification
required

In-
Memory
Normal

LKM

KAIST 43 CySeclLab

KI-Mon Platform

= Based on external hardware, explored possibilities of
detecting rootkit attacks on mutable kernel objects

= Developed hardware-assisted mechanisms that can be
utilized to build rootkit detection rules

» hardware-assisted memory whitelisting for value verification
= event-triggered callback mechanisms for semantic verification

= KI-Mon API for Programmability

KAIST 44 CySecLab

KI-Mon: Vigilare for Dynamic Kernel

KI-Mown Main Module

nHawtvent >
ontawevent () n Logle)

Declslo _)| Inspectintegrity(

@® Pass to processor

@ Checklegitimate value register A ® DMA Request

DMA
T module

Al @ Filter out if write value is ® Get

® Snooping Host in a legitimate value register

System Bus Snapshot

<-' """) Host System Busg: ? >

Host System i
Memory

KAIST 45 CySeclLab

Refined (Haw)Event Generation

—-Generate Event(Addr,Value)+——p
Set of
Value Filter white-listed
r values
Set of addresses Address Filter

to be monitored|

Read Traffic Filter

t

Bus Traffic Feed
| |

KAIST 46 CySeclLab

Monitoring Rules

= Configurable APlIs

typedef struct MonitoringRuleType{
CriticalRegion criticalRegion;
WhiteList whitelist;

void initMonitoringRule();

Region Monitored by VTMU and trigger
event generation

Whitelist can be set for the critical Region

int (*onHawEvent)(addr,value); |
int (*inspectIntegrity)(argArray);|

< Event handling routine triggered by event
from VTMU

int (*traceDataStructures)();
} MonitoringRule;

— Used for semantic verification

— Used for whitelisting-based verification

KAIST 47

ﬁ Additional functions can be programmed

CySecLab

Software Platform for KI-Mon

Monitor Layer ‘ KI-Veri

Semantic Layer [MonitoringRule J

Data Structure Layer Dai.:a. S-tructur-e
Acquisition Engine
Address
Raw Data Layer DI.VIA VT_MU Translation
Driver Driver Engine

KAIST 48 CySeclLab

Snapshot-based vs Snoop-based

KAIST

napshot Pollin

(400 pus each) enLKMHash() checkLKM() compareHash()

B
5600us Wait | 3750ps H 5600pus
30ms
IDLE
)) TIME
tu KM inserion ON@Pshot-only Monitor
IS event
(%)
2
o Vs
Y
onHawéEvent() inspectintegrity() inspectintegrity()
->genLKMHash() ->checkLKM() ->compareHash()
BUSY
Wait
5600us 20 3750ps H 5600us
IDLE
TIME
KI-MON

LKM insertion
event

49 CySecLab

CPU Cycles of the Kernel Monitors

CPU Cycle
10,000,000 [
1,000,000 T % — H ! 1 e 258 O | ! *_-./ _—.
excessive CPU usage of Snapshot Monitor
100,000 1
-#-Snapshot
10,000 Mon
1,000 /A
100 T ™ T 1
: ‘ \
LKM hiding attac;:k/ev nt occurs at se
10 T ‘ ™ ; T ™ ; ‘ 1
Zer overhéad during id!eg time
: A—H——A——H—A—-A—A—H——A—H-A—J L Second

KAIST

8

9 10 11 222 13 24 15 216 17 18 19 20

50 CySeclLab

Memory Bandwidth Overhead on the Monitored Host

KAIST

Host Bandwidth (Mb/s)

45

40

35

30

25

20

15

10

\
no snapshot 100ms 10ms 1ms
51

—+—=STREAM
—#-RAMSPEED

Snapshot
Interval(ms)

CySeclLab

Memory Bandwidth Overhead on the Monitored Host

e Detection rate against 100 trials of LKM hiding attack

e KI-Mon outperforms in terms of detection rate against
rapidly changing data

e Events missed in between snapshots

1khz Snapshot Max-frequency KI-Mon
Snapshot
(over 10khz)

4% detected 70% detected 100% detected

KAIST 52 CySeclLab

Summary for KI-Mon

= KI-Mon presented an event-triggered monitoring scheme on
an external hardware

= Prototyped the design with LEON3 (SPARC) processor on a
FPGA-based development board

* Implemented KI-Mon API for programmability

= Evaluated the platform with VFS hooking and LKM hiding
monitoring rule

= Experiments showed KI-Mon design efficacy and efficiency
in terms of processor usage

KAIST 53 CySeclLab

Rootkit and Kernel Integrity
Protection (ATRA)

Graduate School of Information Security, School of Computing, KAIST
Brent Byunghoon Kang

KAIST 54 CySeclLab

KAIST

http://breakthroughs.kaist.ac.kr/?post _no=163

HOST SYSTEM

0x5000 N/A
0x6000 0x3000
0x7000 N/A
0x8000 0x9000

95

KI-MON
VIGILARE

EXTERNAL
MONITORS

ATRA
ATTACK

CySeclLab

http://breakthroughs.kaist.ac.kr/?post_no=163

ATRA attack

= Can deceive EXTERNAL SYSTEM

HOST SYSTEM EXTERNAL SYSTEM

|
> ATRA Am;x

Virtual Address | Physical Address
0x5000 N/A
0x6000 0x3000
0x7000 N/A
0x8000 0x9000

 KAIST 56 CysSecLab

Roadmap

= Introduction & Background
= Rootkit and kernel integrity verification
® Virtual address and paging

® Problem of existing work

= Attack Design
=" Memory bound ATRA
® Register bound ATRA

= Implementation & Evaluation

= Conclusion

KAIST 57 CySeclLab

What is Rootkit?

" In a nutshell : Kernel privileged malware

= Stealthy type of software which manipulates OS
" Disable anti-virus software
" Hide specific Information
= Networking
= File
" Process
= Key-logging
" |ntercept H/W Interrupt

KAIST 58 CySeclLab

Example : System Call Hooking

= System Call Table
® Global table of kernel function pointers
® Each function provides a kernel service
® (e.g., sys_open, sys_execve)
® Resides in memory

® Should not be changed after booting
® |f rootkit modifies system call table, OS service will be changed

SYSTEM CALL TABLE sys_open()

READ
waiTe
CySeclLab

KAIST 59

Hardware-based Memory Monitor

= Hardware Monitor

® Completly stealthy from host system

® Unlikely to be compromised

T T W B

r o 2 2 K 8 3 % N\ N\ N \

—~-ms

r & & N E B B 9 9\ N
F %

KAIST

60

CySecLab

Current H/W-based Memory Monitors

= Copilot (ACM CCS 2004)

® Uses memory DMA to detect kernel modifications

= Vigilare (ACM CCS 2012)

® Snoops memory bus to detect kernel modifications

= KIMON (Usenix Security 2013)

® Detects illegal memory modification of kernel dynamic region

= Mguard (ISCA 2013)

® Similar to KIMON, advanced architectural support

KAIST 61 CySeclLab

Attack Model / Assumption

= Attacker has root privilege
® Rootkit

= Attacker’s goal
®" Manipulate the OS without being detected

= Defender’s goal
® Detect manipulation against OS

= Defender’s capability
® Access memory using physical address
® No access to CPU register context

= Host system uses ‘Paging’
= ATRA exploits paging mechanism to circumvent external monitors

KAIST 62 CySeclLab

Problems of HW-based Monitors

= HW monitors cannot understand Virtual Address
'] Memory-bound ATRA

= HW monitors cannot know CPU register context

] Register-bound ATRA oo Physical
: X Addr.
Virtual Physical 0x3000 -
[Addr. Addr. < - HW-based
Registers _# A -base
0x600 MMU 0x3000

d\ Monitor

CPU ¢

[Page Table] Memory

0x5000
0x6000 0x3000 OxFEEF

MIST 0x7000 - 63 CyseCLa b

Problems of HW-based Monitors

= HW monitors cannot understand Virtual Address
'] Memory-bound ATRA

= HW monitors cannot know CPU register context
] Register-bound ATRA

Physical

0x0000 A d d r.

Virtual 0x3000

-

Physical - "
Addr. << —_—

i Addr. \ HW-based
[Registers 0x600 MMU - \ | Monitor

KAIST

Ox70D0
CPU ¢
0x7000

[Page Table] System Call l
0x5000 -

0x6000 0x7000

OXFFFF

0x7000 . 64 CySeclLa b

ATRA (Address Translation Redirection Attack) Overview

KAIST

-~

= ~

s
{\ Register-bound ATRA Y
e

~

CR3-ATRA " .

1 \
+

Hardware Registers in CPU ,’
1
I

CRO

!

CR

E

CR4

Modified Pointer Translation

Normal Pointer Translation

Pointer Redirection Preparation

_______ =<
! \\Saved-CRS-ATRA

\

-

~
-

= ATRA can be categorized into 4 attacks:

/_Memory-bound ATRA
~ _-

—

Physical Memory

Kernel Obejet
(KObj)

PGD-ATRA | 1 PTE-ATRA
1 \
Page Directories ! \‘ Page Table
Saved Context (PGDs) ¥ (PTE)
4 for Processes for Processes for Kernel
Saved-CR3 i = 1
i : PGD ; PTE
! s | entry
; | 1
schedule () : > T : R
: i
e ! : Copy of
! : Copies of Page 1 opy o ,
: 1 Directories(PGD’s) : Page Table(PTE’)
1 : for Processes 1 for Kernel
\ |
| 1
! L PTE
: : entry
| 1

Kernel Object
Copy (KObj’)

65

Y

(' \

u0132Y L10wd g paL0jIuo i

< 0132y K10WI Y paLOUOUL-UON

>eclLab

PTE-ATRA (Page Table Entry-ATRA)

Hardware Registers in CPU

CRO

CR2

Saved Context
for Processes

CR3 <

CR4

------ Modified Pointer Translation

Normal Pointer Translation

Saved-CR3

schedule ()

— — "~ Pointer Redirection Preparation

NAIDI

Page Directories Page Table
(PGDs) (PTE)
for Processes for Kernel
PGD PTE
entry entry
>
L N
66

Physical Memory

Kernel Obejct
(e.g. Syscall Table)

(not used)

\4’ LA A L

10132y K10Ud] P2LOJIUOTY

0132 L10Wd) PaLOJITUOW-UON

PGD-ATRA (Page Directory Entry-ATRA)

Hardware Registers in CPU

Saved Context
for Processes

—————— Modified Pointer Translation

Normal Pointer Translation

Pointer Redirection Preparation

NaAlIJI1

Saved-CR3
CRO ‘1:1
CR2 schedule ()
CR3 <
CR4

Page Directories Page Table
(PGDs) (PTE)
for Processes for Kernel
b PTE
- 1
entry : entry
1
T 1
T 1 >
: (not used)
: Copy of
1 Page Table(PTE’)
: for Kernel
P i e e [’
1]
I
. 1 PIE
T
!]
-t

67

Physical Memory

Kernel Obejct
(KODbj)

Y

(not used)

Kernel Object
Copy (KObj’)

v’ e Nt Nt B Wl B

10152y L10wapy paLojruop

U013y L1OWI P PILOPTUOW-UON

Saved-CR3-ATRA

Page Directories Page Table Physical Memory
. . Saved Context (PGDs) (PTE)
Hardware Registers in CPU for Processes for Processes for Kernel
Saved-CR3 [E—

1

CRO] | entry PTE
: enicy Kernel Obejct

CR2 schedule () R - » BN ObY)
1 a (not used)

(not used) not used (oo

CR3 ¢ : e) =
| Copies of Page Copy of ,

CR4 i Directories(PGD’s) Pag: T’;?le(P;FE)
| or Kerne e o
1 F_EQEF_I.?_C:EEEES__ i Kernel Object
1 1 ~ o
I i Copy (KOBY) _
'} PGD 9 N

i X . ! entry :
—————— Modified Pointer Translation : e |
Normal Pointer Translation i)""" “““““““ oL

Pointer Redirection Preparation

—

NAIDI 68 wyvLwuLruy

10132y L1outapy paLopuopy

U013y KLOWAPY PALOJIUOW-UON

CR3-ATRA

Hardware Registers in CPU

CRO

CR2

%

o g

Saved Context
for Processes

Saved-CR3

schedule ()

o,
B

TA

CR4

—————— Modified Pointer Translation

Normal Pointer Translation

— 7~ Pointer Redirection Preparation

NAIDI

Page Directories
(PGDs)
for Processes

PGD
entry

Y

(not used)

Copies of Page
Directories(PGD’s)
for Processes

Page Table
(PTE)
for Kernel

PTE

entry

Y

(not used)

Copy of
Page Table(PTE”)
for Kernel

Physical Memory

Kernel Obejct
(e.g. Syscall Table)

Y

(not used)

-

A ’ wd e Wikl WY

U013y L10wapy paLojuo

0132 L1013 J Pa.L0jpuow-UON

Memory Bound ATRA
(parent pointers of paging data structures)

" |In fact, there are a lot of pointers which needs to be
protected for address translation integrity

mm_struct pgd
*mm = PGD
#,
E ped [entry
1 1
PGD '----1 L
""""" PTE | ,?.(_;_E, PTE
Kernel > l»-l H— ! R e
Scheduler 1 l - L i N },
task_struct
ask_struc mm_struct ped
*mm PGD
*pgd : : (i
l T PGD - i PGD :
PTE e PTE
e > } """" LI ———
> I» "’3 l R l

Memory region to be monitored 3 "
to prevent ATRA :l Data structure for locating PGD { ; Page Table

—> Virtual address referencing -=--> Virtual to physical address translation

KAIST 70 CySecLab

CR3-ATRA in detail

= Directly changing CR3 register only affects the current
process’s address space, how to apply this globally?

—

" Find a global register-based hooking point!
® |IDT hooking would be a good example.

KAIST 24 CySeclLab

Kernel
Scheduler

1 : All process must invoke ISR before accessing
any kernel object

Redirect Rootkit Victim 2 : IDT is global and can be relocated w/o accessing
| Process Process known memory
[IDTR v ¥
CPU 0x1000(pf_handler) 0x1000(pf_handler)
0x2000(sys_call_handle) OxBEEF(atra_handler)
0x3000(gpf_handler) 0x3000(gpf_handler)
0x4000(timer) 0x4000(timer)
invoke ..
_ [Attacker’s ISR]" CR3 Redirection]
— (@)
[Orlglnal ISR](I _____________________________ Rg_qufect!
* Root ;age Roc;t Page
Table Table
Kernel ObJECt :-_> Pa;eevﬁ'[aile ‘ o PaLgeeV?"aile
_y| Level f,| Level §|
Page Table Page Table
72

CR3-ATRA and Context Switch

" The resulting behaviour is as follow

PA: Physical Address
% Context Switch

CR3 Value
v Entering Kernel Mode

PA of A’s PGD |
l | |
PA Copy of A’s PGD — : —
| |
% e ¥
I l : I l
PA of B’s PGD — I —
| ; I
PA Copy of B’s PGD — L

Process A ProcessB Process A Process B

KAIST . CySeclLab

Implementation

= ATRA is implemented as a LKM rootkit module
" OS: Linux kernel 2.6
= Architecture : x86

® Over 300 lines of C & assembly code

KAIST 74 CySeclLab

[l
w0 W o

W W N O WD

[l el
0o

[l o

WO W W0 W W

O 0

-~ g n

el el e

(SR SR
OO0 0w
o\

]

M N W N

' T T = = I
~)

o W N - O W

[el o R S

e A T N I U U T O I S S I S I L I o I S o R O R o I S S]
-J

[SR o o

O W o

void my handler() {
asm("push $edx\n");
asm("mov $0x7b, %$edx\n"); // setup DS, ES selector.
asm("mov $edx, %$ds\n"):;
asm("mov %$edx, %es\n");
asm("mov $0xd8, $edx\n"); // setup FS selector.
asm("mov $edx, $fs\n");
asm("pocp $edx\n");
asm("cli");
asm("mov %%eax, 30" : "=r"(sys_num));
asm("push $eax"):;
asm("push $ebx"):
asm("push %$ecx");
asm("push $edx");
asm("push %$esi");
asm("push $edi"):;
asm("sub $0x40, %esp"):
do_attack():
asm("movl $0, $%cr3™ ::"r"(cr3_new[current->pid])); // relocate CR3!!
asm("invlpg 0xc0509940"); // flush TLB for SCT
asm("add $0x40, 3$esp"):
asm("pop %$edi");
asm("pop %$esi"):;
asm("pop %$edx");
asm("pop %$ecx");
asm("pop %$ebx"):;
asm("pop %$eax"):;
asm("sti");
asm("leave\n");
asm("push $0xc0104020\n"); // return to original INT 0x80 handler
asm("ret\n");

75

[

[

oo

| B

o o

// now we have virtual address of original PTE
unsigned int* ppte;
ppte = (pgd_e & PAGE MASK) + PAGE_OFFSET;
// first PIE allocation
if(unlikely(!'new_pte([pid])){
pte_page = alloc_pages (GFP_KERNEL, 0);
new_pte[pid] = (int*)page_address(pte_page):’
}
memcpy (new_pte[pid], ppte, PAGE_SIZE);

// change copied PTE entry to point copied SCT page.

e = (((unsigned int)new_sct_page) - PAGE OFFSET) | 0x1é&7;
index = ((unsigned int)ori_sct & PTE_MASK) >> 12;
new_pte[pid] [index] = e;

// first PGD allocation

if(unlikely('new_pagd[pid])){
pgd_page = alloc_pages (GFP_KERNEL, 0);
new_pgd[pid] = (int*)page_address(pgd_page):

}

memcpy (new_pgd[pid], current->mm->pgd, PAGE SIZE);

// change copied PGD entry to point copied PTE.

e = ((unsigned int)new_pte[pid] - PAGE_OFFSET) | 0x167;
index = ((unsigned int)ori_sct & PGD MASK) >> 22;
new_pad([pid] [index] = e;

// new cr3 value for copied PGD

cr3_new[pid] = (unsigned int) (new_pagd([pid]) - PAGE_OFFSETI;
return ;

76

ATRA Verification

KAIST

= KOBJ : System Call Table

" Monitoring physical address 0x509000 becomes useless endeavor

root@null# ./ATRA Veri

[Time][CR3 1[PGD 1[PTE 1[KOBJ]]

[(sec)][value][paddr][paddr][paddr]

[81]1[35D32000][35D32000] [3666D000] [0056090600]

[82 1[35D32000][35D32000] [3666D000O] [00509000]

[©3]1[35D32000][35D32000] [3666DO0O] [60509000]
04 35D32000] [35D32000] [3666D000] [00509000

05 35DC5000] [35DC5000] [35DBFOOO] [34C16000
[6][35DC5000][35DC5000] [35DBFOOO] [34C166000]
[87 1[35DC5000][35DC5000] [35DBFOOO] [34C166000]

[08 1[35DC5000][35DC5000][35DBFO00][34C16000]

ATRA
in effect

[89]1[35D32000][35D32000] [3666DO0O] [00509000]
[1@]1[35D32000][35D32000] [3666DO0O] [00509000]
[11]1[35D32000][35D32000] [3666D000O] [00509000]
[12]1[35D32000][35D32000] [3666DOOO] [00509000]
e

root@null#

77

ATRA
in effect

CySeclLab

Evaluation

= Question : doesn’t ATRA crash the OS?

® Answer : No.

® But you need to implement it right.

=" ATRA however degrades system performance
" Not much as detectable

® External monitor cannot evaluate the system performance

KAIST - CySeclLab

UnixBench after CR3 ATRA

= OS is stable

= Execl Throughput degrades due to the additional memory allocation

O Before @2 After

900 -
800 S
g 7 i
o B
500 - B
400 - L
3001 o o
0o |

0 b D 7 -

Execl File Copy 1024 Pipe Process System Call
Throughput Throughput Creation Overhead

KAIST 29 CySeclLab

STREAM bench after CR3 ATRA

= OS is stable, performance degradation is negligible

& Before After ® After(w/o TLB flush)

2500 -
2000 -

1500

MB/

1000

500 | |

0

KAIST 80 CySeclLab

Conclusion

= ATRA proves all the existing H/W based kernel integrity
monitoring approaches can be completely evaded

= Address Translation Redirection Attack is feasible

= We hope that the future research regarding H/W based
monitoring to become more trustworthy by addressing
ATRA

KAIST 81 CySeclLab

Acknowledgements and Contacts: cysec.kaist.ac.kr

https://cysec.kaist.ac.kr/##fpublications
e [PrivateZone] J. Jang, C. Choi, J. Lee, N. Kwak, S. lee, Y. Choi, B. Kang*, "PrivateZone: Providing a Private Execution Environment using
ARM TrustZone”, IEEE Transactions on Dependable and Secure Computing (IEEE TDSC)

e [SECRET] J. Jang, S. Kong, M. Kim, D. Kim and B. Kang. SeCReT: Secure Channel between Rich Execution Environment and Trusted
Execution Environment , NDSS 2015

in Darkness: Return-oriented

Programming against Secure Enclaves”I USENIX Securlty 2017
e [SystemOpenSGX] C. Choi, N. Kwak, J. Jang, D. Jang, K. Oh, K. Kwag, B. Kang* “S-OpenSGX: A System-level Platform for Exploring SGX

Enclave-Based Computing”, Computer & Security, 2017

e [ATRA]D. Jang, H. Lee, M. Kim, D. H. Kim, D. G. Kim and B. Kang. ATRA: Address Translation Redirection Attack against
Hardware-based Kernel Integrity Monitors. ACM CCS 2014.

Platform for Mutable Kernel Object. USENIX Securltv 2013.

* [VIGILARE] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek and B. Kang. Vigilare: Toward Snoop-based Kernel Integrity Monitor. ACM CCS 2012.
& Detecting Kernel Rootkit Attacks with Bus Snooping, IEEE Transactions on Dependable and Secure Computing

* Kernel Integrity Monitors (Securing computing systems from the core: Kernel defense against insidious rootkit malware):
http://breakthroughs.kaist.ac.kr/?post no=163

Icons made by Freepik, Smartline, Kiranshastry, Bercis, Smashicons, Eucalyp, prettycons from www.flaticon.com

KAIST More information: http://cysec.kr Contacts: brentkang@kaist.ac.kr CySeCLa b

82

https://cysec.kaist.ac.kr/#publications
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://breakthroughs.kaist.ac.kr/?post_no=163
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/smartline
https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/authors/becris
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/https://www.flaticon.com/authors/
https://www.flaticon.com/authors/prettycons
http://www.flaticon.com
https://cysec.kaist.ac.kr
mailto:brentkang@kaist.ac.kr

KAIST

Sungijin et. al (Com&Sec)
The Image Game (IEEE

Detecting malicious binary

or URL based on machine
learning

FriSM (SecureComm)
Access) ,\

User mode privilege
separation on x86
Lord of the x86 Rings

User Application Layer

Vulnerability

(ccs8) IN______ Secure Access _ _ _ _ _ _ _ _ _
: PrivUser Layer (Ring 2)

R 1

Framework that enables : Secret |
individual developers to G RTINS i o

utilize TrustZone i —P—E—E— T oS K I
resources (Open version L . e
©Op p ' (Rich Execution Envi
of TrustZone) :
e o
PrivateZone (IEEE TDSC) 1 o 1 Me
e v 1| 1 Scheduler : I Alld
1
Code reuse attack or : | IE=C : : ',::::::: I,:::
controlled—channel [9 ‘i’“_" c:nfn_s_, | | System Call : 1 P,
attack against Intel : : : Table : -
Software Guard | 1 A D[RRk
eXtensions (SGX) ! ! Secure
o 1 I Channel
Hacking in Darkness N J

(Usenix Security 17)
SGX-LEGO (Com&Sec)

Open platform of
Intel Software Guard
eXtensions (SGX)
allowing an app to run
inside an isolated
execution environment
OpenSGX (NDSS '16)

Hypervisor Layer

Introspection
e

I Verifier
: Compoenet |

In—Host Trusted
Execution Environment (TEE) y

TrustZone®

Security Foundation by ARM®

S—-OpenSGX (Com&Sec)

Establishing secure channel
between ARM TrustZone and
security—sensitive applications
SeCReT (NDSS '15)

Hardening Low Fragmentation
Heap (LFH) Allocator to
prevent Use—After—Free attack
On the Analysis of Byte—
Granularity Heap Randomization
(Computers & Security)
Per—allocation Object Layout
Randomization
POLaR (DSN '19)

Address Translation Redirection
Attack (ATRA) circumventing
external hardware monitors
by relocating kernel objects
into non—monitoring region
ATRA (CCS '14)

Ve

external Trusted
Execution

L Environment (eTEE)
Monitorin

e

External Kernel Integrity Monitors
monitoring kernel from
secure independent external
processor
Vigilare (CCS '12)
KI-Mon (Usenix Security'13)

CySeclLab

Q&A

KAIST CySecLab

