
The Case for System Integrity Monitors
based on A Hardware Memory Snooper

CySecLab (Cyber Systems Security Research Lab)
https://cysec.kr

GSIS (Graduate School of Information Security)

School of Computing, KAIST (Korea Advanced Institute of Science and Technology)

Professor Brent ByungHoon Kang, Ph.D.

https://cysec.kr

Table of Contents

● Trusted Computing

● Vigilare

● KIMON

● ATRA

2

Trusted Computing

Applications and Platform Systems

4

Code 

Operating System 

Application 
 

Data  Code 

System
Administrator 

Vulnerable Applications and Malwares

5

Code 

Operating System 

Application 
 

Data  Code  Malware 

System
Administrator 

Vulnerable Applications, Systems and Malwares

6

Code 

System
Administrator 

Operating System 

Application 
 

Data  Code  Malware 

RootKit 

Vulnerable Applications, Systems and Malwares

7

Code 

System
Administrator 

Operating System 

Application 
 

Data  Code  Malware 

RootKit 

Is the world without malware possible?

Platform System Integrity Monitor

8

http://breakthroughs.kaist.ac.kr/?post_no=163

KI-MON and VIGILARE

● Deployed in Samsung Smart TV as part of its

security system (GAIA)

Anti-Emulation Detection (2018) and Heap

Exploitation Defense (2017)

● Samsung Software Security Solution

http://breakthroughs.kaist.ac.kr/?post_no=163

Vulnerable Applications, Systems and Malwares

9

Code 

System
Administrator 

Operating System 

Application 
 

Data  Code  Malware 

RootKit 

Can we have make computation safe despite the presence of malware?

Secure Isolation of Application

10

Code 

Untrusted Platform System 

Application 
 
Data 

Code 
Secret
Data 

Critical 
Code 

Malware 

System
Administrator 

RootKit 

Secure Isolation of Application

11

Code 

Untrusted Platform System 

Application 
 
Data 

Code 
Secret
Data 

Critical 
Code 

Malware 

System
Administrator 

RootKit 

Data-at-Rest Protection

12

Code 

Untrusted Platform System 

Application 
 
Data 

Code 
Secret
Data 

Critical 
Code 

Secret
Data 

System
Administrator 

Data-in-Transit Protection

13

Code 

Operating System 

Application 
 
Data 

Code 
Secret
Data 

Critical 
Code 

Secret
Data 

Code 

Operating System 

Application 
 
Data 

Code 
Secret
Data 

Critical 
Code 

Secret
Data 

Data-in-Transit

Secret
Data 

13

Data-in-Use Protection

14

Code 

Untrusted Platform System 

Application 
 
Data 

Code 
Secret
Data 

Critical 
Code 

Secret
Data  Secret

Data 
Critical 
Code 

System
Administrator 

Data-in-Use Protection: Confidential Computing

15

Code 

Operating System 

Application 
 
Data 

Code 
Secret
Data 

Critical 
Code 

Secret
Data  Secret

Data 
Critical 
Code 

System
Administrator 

Trusted Confidential Computing

16

Roadmap: System Integrity Monitors

▪ Research Overview
▪ Operating Systems Integrity Monitoring

▪ Vigilare for Static Kernel Region
▪ ACM CCS 2012

▪ KI-Mon for Dynamic Kernel Region
▪ Usenix Security 2013

▪ ATRA: Address Translation Redirection Attack
▪ ACM CCS 2014

17

Rootkit and Kernel Integrity
Protection (Vigilare)

18

Graduate School of Information Security, School of Computing, KAIST

Brent Byunghoon Kang

Rootkit Attacks on OS Kernels

▪ Rootkits control victimized OS to report false information

▪ Detection/Recovery attempts from the layers above the
kernel are not trustworthy

19

Detection Tool

Kernel Integrity Monitoring Platforms

▪ Kernel rootkit detection therefore requires a safe execution
environment outside of OS kernel

20

External Hardware-basedHypervisor-based

Protecting Integrity of OS Kernels

▪ Hypervisor / VMM based approaches
▪ Recently, approaches based on hypervisors have gained popularity.

▪ SB CFI, Kernel Guard, OSck, Livewire

▪ However, as hypervisors are becoming more and more complex,
hypervisors themselves are exposed to numerous software
vulnerabilities
▪ E.g., Bluepill, DMA code injection, Subvirt

▪ Hardware based approaches
▪ Copilot, PCI hardware, Static kernel region
▪ HyperSentry, Intel SMM, Stop host to check integrity

21

Snapshot Analysis Monitoring

▪ Usually assisted by some type of trusted component that
▪ Enables saving of the memory contents into a snapshot
▪ Perform an analysis to find the traces of a rootkit attack

▪ Some Examples
▪ Copilot

▪ A custom Peripheral Component Interconnect (PCI) card to create
snapshots of the memory via Direct Memory Access (DMA)

▪ HyperSentry
▪ The System Management Mode (SMM) are utilized to implement the

snapshot- based kernel integrity monitors

22

Snapshot-based Monitoring

▪ Inherent weakness
▪ Inspect the snapshots collected over a certain interval,

▪ Missing the evanescent changes in between the intervals.

▪ Vulnerable to transient attack
▪ Not leave persistent traces in memory contents,

▪ Using only momentary and transitory changes.

23

Transient Attack

▪ Difficulties of Detecting Transient Attacks

24

Transient Attack / Scrubbing Attack

▪ Difficulties of Detecting Transient Attacks

25

Addressing Transient Attack

▪Raising the rate of snapshot-taking
▪ increase the probability of detection.

▪ Frequent snapshot-taking
▪ increased overhead to the host system.

▪Randomizing the snapshot interval
▪ The detection rate would greatly depend on luck

26

Transient Attack / Scrubbing Attack

▪ Raising the rate of snapshot taking.

27

Vigilare : Snoop-based Kernel Integrity Monitor

▪ Overcomes the limitations of existing snapshot-based kernel integrity
monitoring.

▪ Monitors the operation of the host by “snooping” the bus traffic
▪ Of the host system

▪ From a separate independent system module

▪ First Prototype:
▪ Static immutable region integrity checking

28

Keep your heart with all vigilance, for from it flow the springs of life. Proverbs 4:23 (ESV)

Because the Lord kept vigil that night to bring them out of Egypt, on this night all the Israelites
are to keep vigil to honor the Lord for the generations to come. Exodus 12:42 (NIV)

Design and Implementation

29

Snooper for Static Immutable Region

▪ Selective Bus-traffic Collection
▪ Snooper must be designed with a selective bus-traffic collection

algorithm

30

Design and Implementation

▪Handling Bursty Traffic
▪ AMBA2 hardware

▪ 4 byte address, 4byte data per traffic
▪ It takes more than one cycle for one traffic

▪ Filter out uninteresting traffic with hardware module

▪ Support Static Immutable Region
▪ All read traffic is filtered
▪ All write traffic that is not in immutable region is filtered

31

Design and Implementation

▪Monitoring target: static/immutable regions
▪ Kernel codes

▪ System call table

▪ Interrupt descriptor table

▪ Physical address of targets
▪ Physical locations of static regions are not changed after bootstrap

▪ Find locations on bootstrap and use them for kernel runtime

32

Design and Implementation
• Prototypes

• Host system (monitoree)
• 50MHz Leon 3 processor (SPARC V8)
• 64MB SDRAM
• Basis of SnoopMon

• SnoopMon (Vigilare)
• Host system + Snooper + Verifier

• SnapMon (Snapshot based approach)
• Host system + DMA + Verifier
• Hash accelerator hardware

• 5 seconds -> 1.3 ms

33

Experimental Result
• Performance

• STREAM benchmark is widely used for measuring the memory
bandwidth of a computer system

• Tuned STREAM_BENCH
• float -> int

• Transient attack
• Synthesized rootkit example that performs transient attack to static

immutable region

• E.g., system call table with size of 1MB

34

Experiment: Performance Degradation

35

Experiment: Transient Attack Detection

36

Conclusion: Snooper for Static Kernel Region

• Vigilare, a snoop-based monitoring scheme with hardware
support

• Snooper for static immutable region integrity

• Snapshot approach has fundamental trade-off
• Longer interval, less performance degradation
• but, less ability to detect transient attacks
• Shorter interval, more performance degradation

• Snooping based approach can
• Detect all transient attacks on immutable static regions
• No performance degradation

37

Challenges in Monitoring Dynamic Kernel Region

• Dynamic-location of data structure
• Objects are allocated runtime

• Addresses are obtained multiple steps of point traversal

• Monitoring regions are no longer fixed

• Dynamic-size data structures
• Number of nodes or entries flexibly changes as in

• linked lists or queues.

• Dynamic-content
• Legitimate changes from the normal operations of kernel

• Additional periodic snapshots in parallel with the integrity
monitoring, frequent enough to keep track of changes

38

Rootkit and Kernel Integrity
Protection (KIMON)

Graduate School of Information Security, School of Computing, KAIST

Brent Byunghoon Kang

39

Existing external hardware-based monitors

● 1. Copilot (Sec ‘04)

▪ Presented snapshot-based kernel static region monitoring

▪ Simplistic hash comparison scheme

● 2. Vigilare (CCS ’12)

▪ Presented snoop-based monitoring that detects all write traffic to kernel static region
including transient attacks

▪ Overcome high performance overhead of high-frequency snapshots with snoop-based
monitoring

● Existing Works are Limited to

▪ Static regions of kernel

▪ No ability to handle mutable kernel object

40

Mutable Kernel Objects in Kernel Dynamic Region

41

Virtual
memory
layout

Monitoring Mutable Kernel Objects

42

Monitoring Mutable Kernel Objects

43

KI-Mon Platform

▪ Based on external hardware, explored possibilities of
detecting rootkit attacks on mutable kernel objects

▪ Developed hardware-assisted mechanisms that can be
utilized to build rootkit detection rules
▪ hardware-assisted memory whitelisting for value verification

▪ event-triggered callback mechanisms for semantic verification

▪ KI-Mon API for Programmability

44

KI-Mon: Vigilare for Dynamic Kernel

45

Refined (Haw)Event Generation

46

Monitoring Rules

▪ Configurable APIs

47

Region Monitored by VTMU and trigger
event generation

Whitelist can be set for the critical Region

Event handling routine triggered by event
from VTMU
Additional functions can be programmed

Used for semantic verification

Used for whitelisting-based verification

Software Platform for KI-Mon

48

Snapshot-based vs Snoop-based

49

CPU Cycles of the Kernel Monitors

50

Memory Bandwidth Overhead on the Monitored Host

51

Memory Bandwidth Overhead on the Monitored Host

• Detection rate against 100 trials of LKM hiding attack

• KI-Mon outperforms in terms of detection rate against
rapidly changing data

• Events missed in between snapshots

52

Summary for KI-Mon

▪ KI-Mon presented an event-triggered monitoring scheme on
an external hardware

▪ Prototyped the design with LEON3 (SPARC) processor on a
FPGA-based development board

▪ Implemented KI-Mon API for programmability

▪ Evaluated the platform with VFS hooking and LKM hiding
monitoring rule

▪ Experiments showed KI-Mon design efficacy and efficiency
in terms of processor usage

53

Rootkit and Kernel Integrity
Protection (ATRA)

54

Graduate School of Information Security, School of Computing, KAIST

Brent Byunghoon Kang

http://breakthroughs.kaist.ac.kr/?post_no=163

55

http://breakthroughs.kaist.ac.kr/?post_no=163

ATRA attack

▪ Can deceive EXTERNAL SYSTEM

56

Roadmap

▪ Introduction & Background
▪ Rootkit and kernel integrity verification

▪ Virtual address and paging

▪ Problem of existing work

▪ Attack Design
▪ Memory bound ATRA

▪ Register bound ATRA

▪ Implementation & Evaluation

▪ Conclusion

57

What is Rootkit?

▪ In a nutshell : Kernel privileged malware

▪ Stealthy type of software which manipulates OS
▪ Disable anti-virus software

▪ Hide specific Information

▪ Networking

▪ File

▪ Process

▪ Key-logging

▪ Intercept H/W Interrupt

58

Example : System Call Hooking

▪ System Call Table
▪ Global table of kernel function pointers

▪ Each function provides a kernel service
• (e.g., sys_open, sys_execve)

▪ Resides in memory

▪ Should not be changed after booting
• If rootkit modifies system call table, OS service will be changed

sys_open()

sys_read)

sys_write()

SYSTEM CALL TABLE

OPEN

READ

WRITE

mal_function()

59

Hardware-based Memory Monitor

▪Hardware Monitor

▪ Completly stealthy from host system

▪ Unlikely to be compromised

60

Current H/W-based Memory Monitors

▪ Copilot (ACM CCS 2004)
▪ Uses memory DMA to detect kernel modifications

▪ Vigilare (ACM CCS 2012)
▪ Snoops memory bus to detect kernel modifications

▪ KIMON (Usenix Security 2013)
▪ Detects illegal memory modification of kernel dynamic region

▪Mguard (ISCA 2013)
▪ Similar to KIMON, advanced architectural support

61

Attack Model / Assumption

▪ Attacker has root privilege
▪ Rootkit

▪ Attacker’s goal
▪ Manipulate the OS without being detected

▪ Defender’s goal
▪ Detect manipulation against OS

▪ Defender’s capability
▪ Access memory using physical address

▪ No access to CPU register context

▪ Host system uses ‘Paging’
▪ ATRA exploits paging mechanism to circumvent external monitors

62

Problems of HW-based Monitors

▪ HW monitors cannot understand Virtual Address

🡪 Memory-bound ATRA

▪ HW monitors cannot know CPU register context

🡪 Register-bound ATRA

Virtual Addr. Physical Addr.

0x5000 -

0x6000 0x3000

0x7000 -

MMU

Page Table

CPU

Registers HW-based
Monitor

Physical
Addr.Physical

Addr.
System Call

Table

0x0000

0x3000

0x6000

0xFFFF

Virtual
Addr.

0x3000

Memory

63

Virtual Addr. Physical Addr.

0x5000 -

0x6000 0x7000

0x7000 -

Problems of HW-based Monitors

▪ HW monitors cannot understand Virtual Address

🡪 Memory-bound ATRA

▪ HW monitors cannot know CPU register context

🡪 Register-bound ATRA

MMU

Page Table

CPU

Registers HW-based
Monitor

Physical
Addr.

Physical
Addr. System Call

Table

0x0000

0x3000

0x6000 0x7000

0xFFFF

Virtual
Addr.

Memory
0x7000

System Call
Table

64

ATRA (Address Translation Redirection Attack) Overview

▪ATRA can be categorized into 4 attacks:

▪ PTE-, PGD-, Saved-CR3, and CR3-ATRA

65

PTE-ATRA (Page Table Entry-ATRA)

66

PGD-ATRA (Page Directory Entry-ATRA)

67

Saved-CR3-ATRA

68

CR3-ATRA

Memory Bound ATRA
(parent pointers of paging data structures)

▪ In fact, there are a lot of pointers which needs to be
protected for address translation integrity

70

CR3-ATRA in detail

▪Directly changing CR3 register only affects the current
process’s address space, how to apply this globally?

▪ Find a global register-based hooking point!

▪ IDT hooking would be a good example.

71

IDT

0x1000(pf_handler)

0x2000(sys_call_handle)

0x3000(gpf_handler)

0x4000(timer)

Rootkit
Process

CPU

IDTR

Attacker’s ISR

Original ISR

IDT (Copy)

0x1000(pf_handler)

0xBEEF(atra_handler)

0x3000(gpf_handler)

0x4000(timer)

Victim
Process

Kernel
Scheduler

invoke

Kernel Object

1 : All process must invoke ISR before accessing
any kernel object
2 : IDT is global and can be relocated w/o accessing
known memory

Redirect

CR3 Redirection

72

CR3-ATRA and Context Switch

▪ The resulting behaviour is as follow

73

Implementation

▪ATRA is implemented as a LKM rootkit module

▪ OS : Linux kernel 2.6

▪ Architecture : x86

▪ Over 300 lines of C & assembly code

74

75

76

ATRA Verification

▪ KOBJ : System Call Table

▪Monitoring physical address 0x509000 becomes useless endeavor

ATRA
in effect

77

Evaluation

▪Question : doesn’t ATRA crash the OS?

▪ Answer : No.

▪ But you need to implement it right.

▪ATRA however degrades system performance

▪ Not much as detectable

▪ External monitor cannot evaluate the system performance

78

UnixBench after CR3 ATRA

▪OS is stable

▪ Execl Throughput degrades due to the additional memory allocation

79

STREAM bench after CR3 ATRA

▪OS is stable, performance degradation is negligible

80

Conclusion

▪ATRA proves all the existing H/W based kernel integrity
monitoring approaches can be completely evaded

▪Address Translation Redirection Attack is feasible

▪We hope that the future research regarding H/W based
monitoring to become more trustworthy by addressing
ATRA

81

Acknowledgements and Contacts: cysec.kaist.ac.kr
https://cysec.kaist.ac.kr/#publications

• [PrivateZone] J. Jang, C. Choi, J. Lee, N. Kwak, S. lee, Y. Choi, B. Kang* , ”PrivateZone: Providing a Private Execution Environment using
ARM TrustZone”, IEEE Transactions on Dependable and Secure Computing (IEEE TDSC)

• [SECRET] J. Jang, S. Kong, M. Kim, D. Kim and B. Kang. SeCReT: Secure Channel between Rich Execution Environment and Trusted
Execution Environment , NDSS 2015

• [HackingEnclave] J. Lee, J. Jang, Y. Jang, N. Kwak, Y. Choi, C. Choi, T. Kim, M. Peinado, B. Kang*, ”Hacking in Darkness: Return-oriented
Programming against Secure Enclaves”, USENIX Security 2017

• [SystemOpenSGX] C. Choi, N. Kwak, J. Jang, D. Jang, K. Oh, K. Kwag, B. Kang* “S-OpenSGX: A System-level Platform for Exploring SGX
Enclave-Based Computing”, Computer & Security, 2017

• [ATRA] D. Jang, H. Lee, M. Kim, D. H. Kim, D. G. Kim and B. Kang. ATRA: Address Translation Redirection Attack against
Hardware-based Kernel Integrity Monitors. ACM CCS 2014.

• [KIMON] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek and B. Kang. KI-Mon: A Hardware-assisted Event-triggered Monitoring
Platform for Mutable Kernel Object. USENIX Security 2013.

• [VIGILARE] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek and B. Kang. Vigilare: Toward Snoop-based Kernel Integrity Monitor. ACM CCS 2012.
& Detecting Kernel Rootkit Attacks with Bus Snooping, IEEE Transactions on Dependable and Secure Computing

• Kernel Integrity Monitors (Securing computing systems from the core: Kernel defense against insidious rootkit malware):
http://breakthroughs.kaist.ac.kr/?post_no=163

Icons made by Freepik, Smartline, Kiranshastry, Bercis, Smashicons, Eucalyp, prettycons from www.flaticon.com

More information: http://cysec.kr Contacts: brentkang@kaist.ac.kr

8282

https://cysec.kaist.ac.kr/#publications
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://cysec.kaist.ac.kr/
http://breakthroughs.kaist.ac.kr/?post_no=163
https://www.flaticon.com/authors/freepik
https://www.flaticon.com/authors/smartline
https://www.flaticon.com/authors/kiranshastry
https://www.flaticon.com/authors/becris
https://www.flaticon.com/authors/smashicons
https://www.flaticon.com/authors/https://www.flaticon.com/authors/
https://www.flaticon.com/authors/prettycons
http://www.flaticon.com
https://cysec.kaist.ac.kr
mailto:brentkang@kaist.ac.kr

8383

Q & A

