
Work in progress: A formally verified shadow stack for RISC-V

Matthieu Baty
IRISA

Inria, CNRS
Rennes, France

matthieu.baty@inria.fr

Guillaume Hiet
IRISA

CentraleSupelec, Inria, CNRS
Cesson-Sévigné, France

guillaume.hiet@centralesupelec.fr

Pierre Wilke
IRISA

CentraleSupelec, Inria, CNRS
Cesson-Sévigné, France

pierre.wilke@centralesupelec.fr

Abstract—In recent years, the disclosure of several significant
security vulnerabilities such as Spectre and Meltdown has re-
vealed the trust put in some presumed security properties of
commonplace hardware to be misplaced. A way of rebuilding
this trust would be to make these security properties explicit
and offer corresponding computer-checked proofs.

Formally proving security properties about hardware
systems might seem prohibitively complex and expensive.
This paper addresses this concern by describing a realistic
and accessible methodology for specifying and proving secu-
rity properties during hardware development. We describe
the formal specification and implementation of a shadow
stack mechanism on an RV32I processor. Our final objective
would be to prove that this security mechanism is correct,
i.e., any illegal modification of a return address does indeed
result in the termination of the whole system.

Index Terms—RISC-V, Formal Methods, Hardware Verifica-
tion, Shadow Stack

1. Introduction

Formal methods can be used to build trust in the prop-
erties of hardware components. Their use in the domain
was historically mostly confined to computer safety, as
exemplified in Intel hardware with the formal verification
of the floating-point operations following the discovery
of the Pentium FDIV bug [1] or with the verification of
cache coherence protocols [2]. However, they are also a
good fit for computer security. Indeed, proposed security
mechanisms can be formally specified and proven to offer
some guarantees.

In a recent example, some such properties have been
formally established for the Morello architecture, an ex-
tended version of the Arm ISA which includes constructs
for fine-grained memory protection [3]. In contrast to
our work, these properties were proved at the ISA level,
whereas for many interesting security properties, a lower
level, such as register transfer level, is more appropriate.
Alas, although they offer some promising ways of tackling
the long-standing issue of security in hardware design,
formal methods are still far from being a common sight
in the industry at large.

This article proposes a realistic and accessible method-
ology for specifying and proving security properties dur-

This work was supported by a grant from the French National Cyberse-
curity Agency (ANSSI).

ing hardware development. We focus on a concrete ex-
ample where such a property is defined and subsequently
proved. We modify an existing formal model of an em-
bedded RISC-V processor, equipping it with a hardware-
based return address shadow stack that acts as a runtime
safeguard against return address modifications. We then
prove that this security mechanism works as it should.
Although this example is quite simple, it allows us to
demonstrate a gamut of techniques that we could rely
on to prove other security properties on a wide range of
hardware. Note that even though the property we intend to
demonstrate does not depend on side-effects, the language
we use makes it possible to demonstrate timing-related
properties with a similar methodology thanks to its cycle-
accurate semantics.

In section 2, we introduce the notions used throughout
the rest of this paper. In particular, we give a brief intro-
duction to Kôika [4], the formal Hardware Description
Language (HDL) in which our model is defined. Our
main contributions are detailed in section 3. We start
by describing some tools we implemented in order to
be able to reason about Kôika programs, before turning
our attention to our implementation of the shadow stack
mechanism. Afterwards, we present the guarantees that
we expect our model to enforce alongside the proof that
it indeed does enforce them. We mention related work in
section 4 and future work in section 5 before concluding
in section 6.

2. Background

2.1. Formal methods and hardware design

Formal methods made their way into the hardware
industry. Currently, most of their uses in this field have
to do with functional verification, that is, with proving
that some specification is respected. Usually, a piece of
hardware is modelled in a language at some level of
abstraction. Properties corresponding to its specification
are then defined and proved to hold for the model [5].

This approach leaves much room for improvement.
Not only does it lead to duplicated efforts, but using dif-
ferent models for generating hardware and for reasoning
also means that there can be discrepancies between the
hardware and its formal representation. Proofs certified
by a formal system can be misleading if the model they
are based upon is itself wrong.



Another limitation that comes with traditional model
checking is related to abstraction. At most levels of ab-
straction, there are some interesting properties that cannot
be proved. For instance, timing attacks are out-of-scope
at a functional level.

A way of avoiding these issues would be to reason
directly on the model used for production. This is not
the standard method since most HDLs used in industrial
settings do not have a formal semantics. Formal HDLs do
exist, although they tend to be limited in terms of compat-
ible tooling. It is also possible to retrofit formal semantics
onto existing languages such as VHDL or Verilog.

2.2. Shadow stacks

Memory corruptions are still one of the most signif-
icant vulnerabilities in software developed in low-level
languages like C or C++. Indeed, the developer is in
charge of the application memory management in those
languages, which can lead to spatial and temporal memory
safety errors. Attackers can exploit such vulnerabilities to
leak confidential data or modify the application’s intended
behavior. For example, they can exploit some buffer over-
flow on the stack to modify the return address, one of the
most popular attacks of this type. Hardware-based security
mechanisms implementing Control Flow Integrity, like
Intel CET [6], are appealing solutions to protect software
against such attacks. They offer more robust protection
than software-based approaches, since software attacks
cannot modify them.

We are interested in the property that functions do
indeed return to the instruction following their call. A
possible solution to verify such a property is to maintain
a shadow stack. The processor pushes the expected return
address onto this stack for each function call and pops
it whenever it returns. If the address a function tries
to return to, using the regular function stack and return
address register, is not equal to the one on top of the
shadow stack, we can deduce that something went wrong
and react accordingly. Of course, we must also protect
this shadow stack and prevent any regular write into the
memory performed by the application code to modify the
shadow stack content.

Shadow stacks can be implemented either in soft-
ware [7] or in hardware. Although software implementa-
tions provide some benefits (chief among them being their
compatibility with existing hardware), we will focus on
hardware implementations. These offer the advantage of
working with any program without the need for patching.

2.3. Kôika

Kôika [4] is an open-source formal hardware design
language. We decided to rely on this tool for modeling
the shadow stack as it is a reasonable basis for formal
reasoning due to it being embedded within the general-
purpose formal language Coq.

Kôika is based on BlueSpec [8], a general-purpose,
high-level HDL with a focus on automatic generation of
control logic, which is convenient for concurrent systems
such as pipelined processors. It supports Verilog output
through a formally verified compiler. Thus, it can use

Verilog compatible tools (e.g., simulators and FPGA bit-
stream generators). Efficient simulation is possible using
the project’s custom simulator “Cuttlesim” [9]. Kôika
lends itself better to efficient simulation than Verilog be-
cause its form is close to usual software, which allows the
standard software optimization techniques to be applied.
The project also provides some formally demonstrated
properties about the language itself.

In this section, we give a brief introduction to Kôika.
We do not aim at being exhaustive, only at making this
paper understandable on its own.

2.3.1. Rules and conflicts. Kôika models are composed
of the following elements:

• a set of registers, along with their types and their
initial values;

• a set of external calls and their types, allowing
the model to interact with its environment (e.g.,
an external memory or peripheral devices);

• a set of rules, which are atomic actions describing
state transitions that act as building blocks of the
logic of the model — for instance, the definition
of a processor may contain rules such as fetch,
decode and execute;

• a schedule built using the rules, describing the
order in which the rules should be applied.

Kôika is smart enough to run rules in parallel when
they are not in a conflict with each other. For instance,
there can be write conflicts due to two rules attempting
to write to the same register in the same cycle. If running
a rule during a cycle would lead to a conflict, then it is
skipped for the time although rules that appear later in
the schedule may still be executed. In fact, the “One Rule
At A Time” theorem guarantees that the circuits Kôika
generates are functionally equivalent to systems running
rules sequentially.

Combined with scheduling, this behavior can be used
to simplify the definition of pipelined systems: conflicts
help determine how to pipeline a model without the user
needing to give all the details explicitly.

2.3.2. External calls. Kôika is a pure functional language,
but that does not prevent it from representing impure
actions through the notion of external calls. These can
be used to represent interaction with the external world.
When generating Verilog code from a Kôika model, ex-
ternal calls can be bound to Verilog modules.

For instance, external calls can help model external
memory. Indeed, a limitation of Kôika is that it can only
rely on Verilog registers for representing memory, whereas
on FPGAs, the natural solution would be to make use of
block RAM. Even for a rather simple model such as ours,
this is limiting for testing. The alternative is to delegate
memory accesses to raw Verilog code which ensures that
block RAM is used, and the way to do this is through
external calls. The main downside of this solution is that
the Verilog code cannot be reasoned about directly from
Kôika.



3. Contributions

3.1. The processor model

Conveniently, Kôika includes a simple model of a
pipelined RISC-V processor that can be specialized to
cover part of the RV32I or the RV32E part of the standard.
This model does not aim for exhaustiveness and is not
proven to conform to the RISC-V specification (although
it passes the test suite for all the instructions it imple-
ments). It is used as a testing place and a way to showcase
Kôika’s more advanced features. Our model is a slightly
tweaked and expanded version of this example.

3.2. The stack model

We added a shadow stack module to the processor. We
can prove its isolation from the core model, in that the
only way of acting on it is through its two methods, push
and pop. These methods are called automatically when
the current instruction corresponds to a function call or
return. They both expect one argument: the address of the
instruction following the current function call for push and
the stack’s return address for pop.

3.2.1. Detecting function calls and returns in machine
code. Contrary to ISAs such as x86, which have dedi-
cated call and return instructions, RISC-V uses the same
instruction for multiple purposes. This choice is common
for RISC (Reduced Instruction Set Computer) ISAs. The
JAL and JALR instructions implement both unconditional
jumps and function calls. However, the arguments that
are passed to them make their role clear. The Application
Binary Interface describes which instructions calls should
be interpreted as function calls or returns, depending on
their arguments.

In fact, the RISC-V specification includes information
regarding how shadow stacks (which they call return-
address stacks) should behave:

For RISC-V, hints as to the instructions’ usage
are encoded implicitly via the register numbers
used. A JAL instruction should push the return
address onto a return-address stack (RAS) only
when rd = x1/x5. JALR instructions should
push/pop a RAS as shown in the table [that
follows].

rd rs1 rs1 = rd RAS action
!link !link − none
!link link − pop
link !link − push
link link 0 pop, then push
link link 1 push

Return-address stack prediction hints encoded in register specifiers used
in the instruction. [. . . ] link is true when the register is either x1 or x5.

3.2.2. Dealing with a detected stack buffer overflow.
On a system with a full-fledged operating system, a stack
buffer overflow could be left for the system to manage.
For instance, the affected program could be killed, and
an error could be logged or displayed to the user. In our
simple embedded system, not all of these options are open.
The two main possibilities are:

• ending the current execution;
• correcting the return address using the shadow

stack information (or just relying purely on it and
ignoring return arguments).

The latter option might be tempting. However, it
comes with significant downsides. If the return address
has been modified, then the rest of the stack has likely
been impacted and cannot be considered safe. Also, ar-
bitrarily modifying the return address is illegal according
to the ISA. On the other hand, stopping execution is not
problematic, as it does not take the processor to an illegal
state.

Our verified stack implementation halts execution on a
mismatch. In order to prove anything about our processor
halting, we first need to define what this means for Kôika
models — this is tricky since Kôika does not have a notion
of halting execution of a model. We deal with this by
emitting an external call and putting our processor into
a sink state. This is done through a variable that guards
the execution of all the rules in the schedule. We make
sure that whenever the external call corresponding to the
shutdown is emitted, no changes of state can possibly
happen in subsequent cycles. When exporting to Verilog,
we link this external call to a module that really halts the
execution of the processor.

An alternative could have been to jump to an exception
handler, where e.g. logging could take place before taking
either action, some form of reset could happen or a reboot
could be triggered. In our minimal example, we don’t care
about what happens past the detection and we content
ourselves with setting the variable guarding all rules in
places where a call to such a handler could have existed.

3.3. Adapting Kôika

The fact that a language has a formally defined seman-
tics does not imply that it is directly usable for proving
general properties. Although it is possible to prove some
things about the behavior of simple Kôika circuits using
only the language itself, Kôika is overall more of a
language about which there are proofs than a language
to build formally certified hardware. It turns out that
trying to demonstrate even basic properties of complex
models leads to serious performance issues due to the way
Kôika’s structure interacts with Coq’s proving facilities.
In particular, the fact that the rules we consider are rather
large, together with Kôika’s heavy use of dependent types,
makes interactive reasoning prohibitively slow.

The bulk of our work was dedicated to finding a way
around this issue. We implemented a function converting
Kôika models to a form that is better suited to formal
reasoning and an interpretation function for this new form.
Instead of having the raw Kôika rules, our new simple
form is a mapping from each register to a symbolic
expression, which depends on the initial values of each
register. We proved that the simple form we construct is
equivalent to the original Kôika program. We can therefore
reason exclusively about this simpler form.

Furthermore, we started putting together a toolbox of
theorems and tactics for reasoning about circuits. A simple
example of such a theorem is no_write_no_change,
defined hereafter.



Lemma no_write_no_change :=
forall reg env sf,
list_assoc (final_values sf) = None ->
getenv env reg =
getenv (interp_cycle env sf) reg.

This theorem comes in handy to eliminate trivial goals
about registers that cannot be modified under the current
assumptions. Indeed, this theorem states that if there is
no variable associated with the final value of some Kôika
register in our alternative form sf, then the value of this
register cannot change during the interpretation of a cycle.
This result follows from how we built the interpretation
function for our custom form.

We implemented and proved the correctness of a
simplification function, propagate, which simplifies a
model under the assumption that the initial value of some
register is known, by replacing all occurrences of this
register by its value.
Lemma propagate_ok :=

forall reg reg_vinit reg' env sf,
getenv env reg = reg_vinit ->
getenv (interp_cycle env sf) reg'
= getenv

(interp_cycle
(propagate env reg reg_vinit) sf)

reg'.

Coq makes it possible to define custom tactics to
automate away part of the tedium. We could, for instance,
define general tactics which take our hypotheses into
account and then attempt to simplify our model as much
as possible, and even recognize some simple subgoals and
solve those automatically. For simple properties, proofs
could be fully automated. As of now, we only have
some simplification functions like propagate as well as
lemmas like no_write_no_change, and we yet have
to assemble these building blocks to build more powerful
tactics.

3.4. Formally verified properties

In plain English, the property that we intend to demon-
strate might be worded as “any illegal call to the stack
module or shadow stack overflow results in halting the
processor without any further change of state”. Let us
formalize this property.

We start by defining what an illegal call to a shadow
stack is. Calls to shadow stack methods can fail in the
following ways:

• calling pop with an argument that does not corre-
spond to the top of the stack: this happens when
the return address has been modified;

• calling pop when the stack is empty: this cor-
responds to the case where a return instruction
occurs that does not match a call instruction;

• calling push when the stack is full: our implemen-
tation features a fixed size stack; therefore it may
happen that the stack is too small to contain all
the (otherwise legitimate) return addresses.

In all these cases, we halt the execution of the proces-
sor.

Hereafter are some useful definitions about the shadow
stack (sstack) that we will use throughout our proof:

Definition sstack_empty env :=
getenv env sstack.sz = 0.

Definition sstack_full env :=
getenv env sstack.sz = sstack.capacity.

Definition sstack_top_address env :=
match (getenv env sstack.sz) with
| 0 => None
| x => Some (getenv env (sstack.stack x))
end.

Definition is_halt_set env :=
sstack.halt = 1.

Our processor is pipelined, which implies that several
instructions are in-flight at the same time. Nonetheless,
there is at most one instruction at the execute stage at any
point, and it just so happens that all the calls to shadow
stack functions occur there.

There is no definition for the address on top of the
(non shadow) stack. Although we could devise one, it is
not necessary for our proof. Indeed, we can simply rely
on the information that can be found in the data used for
synchronizing between the decode and the execute stage
of our processor to get the current instruction, from which
we can deduce whether the instruction is a procedure
return or not, and, if it is, the address it returns to.

Predicates sstack_push and sstack_pop ex-
press the conditions under which a push or a pop takes
place. Their definition (omitted here) simply amount to
checking whether the instruction in the execute stage is a
call or a return instruction. The no_mispred construct
is used for dealing with the mispredictions that can result
from branch instructions. The effects of a mispredicted
instruction have to be ignored. At the point where an
instruction reaches the execution stage of the pipeline,
it is already known whether or not it belongs to a mis-
predicted branch and therefore whether or not it has to
be ignored. Function stack_top_address (not to be
confused with sstack_top_address), corresponds to
the address being returned to if the current instruction is
a procedure return and to None if it is not.

We can once again define what a shadow stack viola-
tion is, this time formally:
Definition sstack_uflow env :=

no_mispred env /\ sstack_empty env
/\ sstack_pop env.

Definition sstack_oflow env :=
no_mispred env /\ sstack_full env /\
~(sstack_pop env) /\ sstack_push env.

Definition sstack_addr_violation env :=
no_mispred env /\ sstack_pop env
/\ stack_top_address env

<> sstack_top_address env.
Definition sstack_violation env :=
sstack_uflow env \/ sstack_oflow env
\/ sstack_addr_violation env.

We mentioned how we added a variable guarding each
of our rules to ensure that no changes of state can occur in
our model after the processor was halted. We expect that
setting this variable to true causes all the rules to fail
and therefore blocks any change of state from happening.
We formalize that with the following property:
Lemma no_further_changes_of_state
env extcalls_model :=
forall reg n,
getenv env reg =
getenv



(interp_n_cycles n env
calls_model riscv_model_sf) reg.

With that out of the way, we can define our main
property:
Theorem sstack_ok :=
forall env extcalls_model,
sstack_violation env ->
no_further_changes_of_state
(interp_cycle env
extcalls_model riscv_model_sf)
extcalls_model riscv_model_sf.

3.5. Proof

As a first intermediate step, we can
split our goal into stack_violation im-
plies sets_halt and sets_halt implies
no_further_changes_of_state, where
sets_halt is true if after the current cycle, halt is
set to true.

The second subgoal can be easily discharged, because
the code for each rule starts by checking the value of the
halt register, but the first subgoal is more challenging.

We are currently in the middle of proving that if the
sstack_violation predicate holds, then the halt
register is set. This is difficult because, in order for this
register to be written, we need to reason about whether the
whole execute rule conflicts with previous rules or not.
Indeed, if there is a conflict, the effects of the entire rule
are discarded, included the potential writes to the halt
register.

We know that for halt to be set, either JAL or JALR
must be entering the execute stage, but this needs to be
proved:
Lemma halt_set_by_JAL_JALR_only :=
forall env extcalls_model,
getenv env extcalls_model

riscv_model_sf halt = 0
-> sstack_violation env
-> no_further_changes_of_state
(interp_cycle env extcalls_model
riscv_model_sf)

extcalls_model koika_model_sf.

The current definition of the main property depends on
the fact that the targeted architecture is in-order. It would
need to be modified to support out-of-order architectures.
As a consequence, our proof could not be directly reused
for such architectures. Although it is possible to define the
property so that it works on both types of architectures,
this would come at the expense of simplicity and we
elected to keep everything as simple as possible for a first
example. This does not mean that proof reuse was ignored
in this work. Indeed, we introduced many general lemmas
and tactics for simplifying models, as outlined at the end
of subsection 3.3.

4. Related work

We mentioned the work of Nienhuis et al. [3] on
formally verifying properties of a capability extended
version of the Arm ISA. This work bears some similarities
with ours since they define and prove properties about
hardware. However, all their reasoning is done at the ISA

level. In contrast, we reason at the register transfer level,
which is much closer to the concrete hardware.

Lööw et al. [10] give an example of cross stack formal
verification, where formal properties about software rely
on formally certified properties of the hardware. It was
implemented in CakeML [11] and targets a custom archi-
tecture instead of a standardized ISA. Unlike our work,
this paper is not concerned with security mechanisms,
although they could be considered in this language as well.
The example that it considers is the implementation and
verification of a certified compiler on certified hardware.

Erbsen et al. [12] describe the implementation of a
certified IoT lightbulb. This work also blends formal ver-
ification about hardware and software. The main theorem
it defines relates to the validity of the behavior of the
application controlling the lightbulb. Properties about the
hardware, compiler, drivers, and applications are formally
verified and contribute to the final proof. Since those
elements may vary independently of the others, special
attention was given to the proof modularity. Although this
paper also comes from MIT’s Programming Languages
and Verification group, where Kôika was developed, this
work is based on a previous formal HDL called Kami [13].
This language does not have a cycle-accurate semantics,
which means that as it stands, side-channel attacks are out
of its scope.

5. Limitations and future work

5.1. Functional verification

There is an official formal version of the RISC-V spec-
ification based on the Sail language [14], which includes
facilities to export definitions to Coq. Proving that the
processor design we used is conform to this specification
would be a logical next step.

5.2. Generalizing the processor model

The processor we are targeting is quite simple (unpriv-
ileged ISA, 32 bits, minimal extensions). We could gen-
eralize our results by working with a family of processors
instead of a single concrete instance. Our proof should
work mostly the same way for any legal combination of
RISC-V extensions. We have progressed in generalizing
the processor model by generating a Kôika processor
model from a list of RISC-V extensions. However, the
semantics of many new instructions are yet to be defined.

Moreover, we were limited in our implementation by
the fact that only the unprivileged part of the specification
had been implemented. Adding support for the privileged
part of the specification would open possibilities for in-
teracting with the operating system.

5.3. Advanced security mechanisms

Once those basic examples have been shown to work,
we would like to consider more ambitious security mech-
anisms such as a more complex version of shadow stacks
or capabilities.



6. Conclusion

In this paper, we documented a workflow for building
synthesizable certified hardware. The example we settled
on is the implementation of a basic shadow stack for a
simple pipelined RISC-V processor. We write our model
in the formal HDL Kôika, and the reasoning is carried out
in Coq. We are currently working on proving that some
security properties related to return address overwrites
hold for our processor.

Due to performance issues, an alternative representa-
tion of Kôika models had to be devised alongside conver-
sion and interpretation functions. Since we proved these
functions are correct, we can get proofs about Kôika
models from proofs on our simplified form. Furthermore,
we are developing a collection of lemmas and tactics to
prove more complex properties.

In the near future, we intend to pursue this work by
extending our lemmas and tactics toolkit and by applying
it to more ambitious security mechanisms.

References

[1] R. Kaivola, R. Ghughal, N. Narasimhan, A. Telfer, J. Whittemore,
S. Pandav, A. Slobodová, C. Taylor, V. A. Frolov, E. Reeber,
and A. Naik, “Replacing Testing with Formal Verification in
Intel CoreTM i7 Processor Execution Engine Validation,” in
Computer Aided Verification, 21st International Conference, CAV
2009, Grenoble, France, June 26 - July 2, 2009. Proceedings, ser.
Lecture Notes in Computer Science, A. Bouajjani and O. Maler,
Eds., vol. 5643. Springer, 2009, pp. 414–429. [Online]. Available:
https://doi.org/10.1007/978-3-642-02658-4_32

[2] M. Talupur and M. R. Tuttle, “Going with the Flow:
Parameterized Verification Using Message Flows,” in Formal
Methods in Computer-Aided Design, FMCAD 2008, Portland,
Oregon, USA, 17-20 November 2008, A. Cimatti and R. B.
Jones, Eds. IEEE, 2008, pp. 1–8. [Online]. Available: https:
//doi.org/10.1109/FMCAD.2008.ECP.14

[3] K. Nienhuis, A. Joannou, T. Bauereiss, A. C. J. Fox, M. Roe,
B. Campbell, M. Naylor, R. M. Norton, S. W. Moore, P. G.
Neumann, I. Stark, R. N. M. Watson, and P. Sewell, “Rigorous
Engineering for Hardware Security: Formal Modelling and Proof
in the CHERI Design and Implementation Process,” in 2020 IEEE
Symposium on Security and Privacy, SP 2020, San Francisco, CA,
USA, May 18-21, 2020. IEEE, 2020, pp. 1003–1020. [Online].
Available: https://doi.org/10.1109/SP40000.2020.00055

[4] T. Bourgeat, C. Pit-Claudel, A. Chlipala, and Arvind, “The
Essence of Bluespec: a Core Language for Rule-Based
Hardware Design,” in Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020,
A. F. Donaldson and E. Torlak, Eds. ACM, 2020, pp. 243–257.
[Online]. Available: https://doi.org/10.1145/3385412.3385965

[5] J. Harrison, “Formal Methods at Intel — An Overview,” https://
www.cl.cam.ac.uk/~jrh13/slides/nasa-14apr10/slides.pdf, 2010, on-
line; accessed 16 March 2022.

[6] V. Shanbhogue, D. Gupta, and R. Sahita, “Security Analysis of
Processor Instruction Set Architecture for Enforcing Control-Flow
Integrity,” in Proceedings of the 8th International Workshop on
Hardware and Architectural Support for Security and Privacy,
HASP@ISCA 2019, June 23, 2019. ACM, 2019, pp. 8:1–8:11.
[Online]. Available: https://doi.org/10.1145/3337167.3337175

[7] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and
D. Song, “Code-pointer integrity,” in The Continuing Arms Race:
Code-Reuse Attacks and Defenses, P. Larsen and A. Sadeghi,
Eds. ACM / Morgan & Claypool, 2018, pp. 81–116. [Online].
Available: https://doi.org/10.1145/3129743.3129748

[8] R. Nikhil, “Bluespec System Verilog: Efficient, Correct RTL from
High Level Specifications,” in Proceedings. Second ACM and IEEE
International Conference on Formal Methods and Models for Co-
Design, 2004. MEMOCODE ’04., 2004, pp. 69–70.

[9] C. Pit-Claudel, T. Bourgeat, S. Lau, Arvind, and A. Chlipala,
“Effective Simulation and Debugging for a High-level Hardware
Language Using Software Compilers,” in ASPLOS ’21: 26th
ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Virtual Event,
USA, April 19-23, 2021, T. Sherwood, E. D. Berger, and
C. Kozyrakis, Eds. ACM, 2021, pp. 789–803. [Online].
Available: https://doi.org/10.1145/3445814.3446720

[10] A. Lööw, R. Kumar, Y. K. Tan, M. O. Myreen, M. Norrish,
O. Abrahamsson, and A. C. J. Fox, “Verified Compilation
on a Verified Processor,” in Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019,
K. S. McKinley and K. Fisher, Eds. ACM, 2019, pp. 1041–1053.
[Online]. Available: https://doi.org/10.1145/3314221.3314622

[11] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “CakeML:
a Verified Implementation of ML,” in The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’14, San Diego, CA, USA, January 20-21,
2014, S. Jagannathan and P. Sewell, Eds. ACM, 2014, pp. 179–
192. [Online]. Available: https://doi.org/10.1145/2535838.2535841

[12] A. Erbsen, S. Gruetter, J. Choi, C. Wood, and A. Chlipala,
“Integration Verification Across Software and Hardware for a
Simple Embedded System,” in PLDI ’21: 42nd ACM SIGPLAN
International Conference on Programming Language Design and
Implementation, Virtual Event, Canada, June 20-25, 2021, S. N.
Freund and E. Yahav, Eds. ACM, 2021, pp. 604–619. [Online].
Available: https://doi.org/10.1145/3453483.3454065

[13] J. Choi, M. Vijayaraghavan, B. Sherman, A. Chlipala, and
Arvind, “Kami: a Platform for High-Level Parametric Hardware
Specification and its Modular Verification,” Proc. ACM Program.
Lang., vol. 1, no. ICFP, pp. 24:1–24:30, 2017. [Online]. Available:
https://doi.org/10.1145/3110268

[14] A. Armstrong, T. Bauereiss, B. Campbell, A. Reid, K. E. Gray,
R. M. Norton, P. Mundkur, M. Wassell, J. French, C. Pulte,
S. Flur, I. Stark, N. Krishnaswami, and P. Sewell, “ISA Semantics
for ARMv8-a, RISC-V, and CHERI-MIPS,” Proc. ACM Program.
Lang., vol. 3, no. POPL, pp. 71:1–71:31, 2019. [Online].
Available: https://doi.org/10.1145/3290384

https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1109/FMCAD.2008.ECP.14
https://doi.org/10.1109/FMCAD.2008.ECP.14
https://doi.org/10.1109/SP40000.2020.00055
https://doi.org/10.1145/3385412.3385965
https://www.cl.cam.ac.uk/~jrh13/slides/nasa-14apr10/slides.pdf
https://www.cl.cam.ac.uk/~jrh13/slides/nasa-14apr10/slides.pdf
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1145/3129743.3129748
https://doi.org/10.1145/3445814.3446720
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3110268
https://doi.org/10.1145/3290384

	Introduction
	Background
	Formal methods and hardware design
	Shadow stacks
	Kôika
	Rules and conflicts
	External calls


	Contributions
	The processor model
	The stack model
	Detecting function calls and returns in machine code
	Dealing with a detected stack buffer overflow

	Adapting Kôika
	Formally verified properties
	Proof

	Related work
	Limitations and future work
	Functional verification
	Generalizing the processor model
	Advanced security mechanisms

	Conclusion
	References

