
BugsBunny: Hopping to RTL Targets with a Directed Hardware-Design Fuzzer

Hany Ragab∗, Koen Koning∗, Herbert Bos, and Cristiano Giuffrida

hany.ragab@vu.nl, koen.koning@vu.nl, herbertb@cs.vu.nl, giuffrida@cs.vu.nl

Vrije Universiteit Amsterdam
The Netherlands

∗Equal contribution joint first authors

Abstract—Recent attacks on modern processors have demon-
strated the severe consequences of discovering and exploit-
ing hardware vulnerabilities. Simultaneously, the increasing
complexity of modern chip designs and the ever-limited
testing time presents numerous challenges to existing pre-
silicon hardware-design verification tools.

Fuzzing is increasingly the technique of choice for dis-
covering software vulnerabilities, but the same cannot be
said about fuzzing for hardware designs vulnerabilities. Due
to the data-flow nature of how hardware is designed, existing
software fuzzing solutions cannot be readily applied in the
hardware context, and the performance of the proposed
hardware fuzzing solutions suffers from state explosion when
applied on complex hardware designs.

In this work, we present BugsBunny, a feedback-guided
directed hardware-design fuzzer which aims to reduce the
costs of pre-silicon validation. BugsBunny focusses the testing
resources only on the relevant parts of the design-under-
test (DUT), by fuzzing towards a certain target state of
the DUT and eliminating irrelevant parts of the design. We
propose a novel distance-to-target feedback metric, capable
of directing and guiding the fuzzer towards the desired
target state, which is based on lightweight data-flow analysis
and instrumentation of the DUT. By running the DUT on
an FPGA, BugsBunny achieves high fuzzing throughput,
outperforming existing simulation-based solutions.

We perform an end-to-end evaluation of BugsBunny
on complex SoC designs (e.g., the RISC-V BOOM), where
preliminary experiments demonstrate a significant reduction
in the number of fuzzing seeds that are required before the
DUT reaches the target state.
Index Terms—hardware design, RTL, directed fuzzing

1. Introduction

Electronic design automation is the process of de-
signing, simulating, and testing electronic circuits using
software prior to fabrication. Chip manufacturers save
millions of dollars in non-recoverable engineering costs by
simulating designs to detect flaws and correct them prior
to the silicon device fabrication. However, as hardware
designs become more complex, the difficulty of testing
increases proportionately. As a result, numerous hardware
vulnerabilities have been uncovered, putting at risk mil-
lions of users [1], [2], [3]. Therefore, we need ways to

test hardware early on, ideally at the level of a hardware
description language (HDL) such as Verilog or VHDL 1.

On the software side, modern (greybox) fuzzing has
grown into the de-facto standard technique for detecting
vulnerabilities at scale [4]. By automatically mutating and
testing inputs, guided by feedback from the executions
such as code coverage, modern fuzzers can effectively
explore programs to trigger crashes and uncover bugs.
Unfortunately, hardware designs are distinctly different
from software and the existing software-fuzzing solutions
cannot be directly applied to testing hardware designs.
Recent work [5], [6], [7], [8], [9] has investigated how to
model and express certain hardware properties required
in a design fuzzing process, e.g., how to express coverage
on (mainly data-flow oriented) hardware and how to deal
with complex system on chip (SoCs) while avoiding state
explosion, but these problems remain far from solved.

One way to reduce the complexity of hardware fuzzing
is to draw from another well-known technique in the
software fuzzing world: directed fuzzing, that is directing
the fuzzer to reach a particular place in the code [10],
[11], [12], [13]. By focussing on a specific target, the
fuzzer can avoid wasting time and resources exploring less
interesting parts of the program. Modern directed greybox
fuzzers for software revolve around the ability to mea-
sure and minimize the distance between program inputs
and the fuzzing target location. Thanks to the program
control-flow graph (CFG), this distance is relatively easy
to calculate for software fuzzers. However, this is not the
case for RTL fuzzers due to the data-flow nature of RTL.

In this paper, we argue that applying directed fuzzing
on hardware designs can be an important step to accelerate
the process of hardware verification. In particular, our
hypothesis is that directed fuzzing can help efficiently
handle large hardware designs by minimizing the time
needed to validate specific properties of the design under
test (DUT) and focusing the testing resources towards
specific design targets in specific modules. This target can
either be inferred manually (e.g., existing assertions in the
RTL) or manually chosen by an analyst. For example, an
analyst may want to find ways of triggering a transient
execution windows. A target can also be semi-automated:
an analyst may want to know if variants of a mitigated

1. The “source code” of hardware designs, expressed at the register
transfer level (RTL).

mailto:hany.ragab@vu.nl
mailto:koen.koning@vu.nl
mailto:herbertb@cs.vu.nl
mailto:giuffrida@cs.vu.nl


1 module Counter (
2 input clk,
3 input reset,
4 input enabled,
5 input [7:0] incr,
6 input [7:0] max,
7 output [7:0] out
8 );
9 reg [7:0] cnt;

10 wire [7:0] cnt_next;
11

12 assign cnt_next = enabled ? cnt + incr :
cnt;↪→

13 assign out = cnt;
14

15 always @(posedge clk)
16 if (reset)
17 cnt <= 0;
18 else if (cnt_next >= max)
19 cnt <= 0;
20 else
21 cnt <= cnt_next;
22 endmodule

Listing 1: Verilog code of an example hardware module
called Counter.

hardware vulnerability still exist, and thus direct the fuzzer
to the mitigated vulnerability.

We present BugsBunny, a work-in-progress RTL di-
rected fuzzing framework that can be used in the valida-
tion of arbitrary and complex hardware designs, including
the RISC-V BOOM core [14]. We propose a design
for calculating the distance based on approximating the
data flow from the input to the target location in the
DUT. We first statically analyze the RTL of the DUT
to extract a dependency tree of the fuzzing target. Then,
we instrument the DUT RTL to gather the information
needed to calculate the distance during the fuzzing loop.
Our framework features a fuzzer that operates on RTL
signals, is clock-cycle aware, and can isolate subsets of the
modules in large designs. Finally, BugsBunny runs inputs
on the instrumented RTL using an FPGA, to optimize the
executions per second.

To summarize, we present the following contributions:

• A scalable fuzzing framework for testing complex
hardware designs, including a method to approxi-
mate distance for use in directed fuzzing.

• A prototype end-to-end implementation of Bugs-
Bunny, including FPGA-acceleration.

• A preliminary evaluation showing promising re-
sults and a practical solution that can operate on
complex SoCs including the RISC-V BOOM core.

2. Background

2.1. Hardware Design

Hardware is typically described in languages such as
Verilog or VHDL, called hardware description languages
(HDLs). These describe the circuitry at the register trans-
fer level (RTL), and can either be simulated or synthesized
for hardware such as field programmable gate arrays (FP-
GAs) or application-specific integrated circuit (ASICs).
While hardware descriptions may look like typical soft-
ware programs, their design is distinctly different. In RTL,

1 module Counter:
2 input clock : Clock
3 input reset : UInt<1>
4 input enabled : UInt<1>
5 input incr : UInt<8>
6 input max : UInt<8>
7 output out : UInt<8>
8

9 reg cnt : UInt<8>, clock
10

11 node cnt_add = add(cnt, incr)
12 node cnt_next = mux(enabled, cnt_add, cnt)
13 node cnt_wrap = mux(geq(cnt_next, max),

UInt<8>("h0"), cnt_next)↪→

14 cnt <= mux(reset, UInt<8>("h0"), cnt_wrap)
15

16 out <= cnt

Listing 2: FIRRTL intermediate representation of the
Counter module.

the design is described in sequential and combinational
logic. Sequential logic is clock-sensitive, and includes reg-
isters (flip-flops) that update every clock cycle and retain
their value between clock cycles. Combinational logic, on
the other hand, is simply a series of wires and logic gates
(e.g., AND, XOR, etc.) that update immediately once their
input changes (modulo the propagation delay of electronic
signals). This logic is contained within modules, which
have a list of input and output ports. One module can
instantiate other modules to create a hierarchy.

Listing 1 shows an example of a Verilog counter
module. Lines 1–8 define the module and its inputs and
outputs. The sequential logic of this module is at lines 15–
21, and runs on the positive edge of the clock signal. Here
the cnt register is updated to either 0 (if the reset
signal is high or the counter wraps around) or cnt_next.
cnt_next is combinational logic defined at line 12: it is
either the addition of the old value of cnt plus the incr,
or the old value, depending on the enabled input.

FIRRTL [15] is an intermediate representation (IR) for
RTL. The FIRRTL IR is part of the Chisel [16] project,
which is used by RISC-V cores such as Rocket [17] and
BOOM [14]. Additionally, existing Verilog code can be
lifted to FIRRTL. This IR, in turn, can easily be analyzed
and instrumented by compiler passes, and can finally be
lowered to Verilog. This Verilog can then be simulated or
synthesized. Listing 2 shows the FIRRTL representation
of the above Verilog Counter module. This demonstrates
well that most hardware designs use a data-flow rather
than control-flow model. For example, while Verilog had
an if-else (at lines 16–21), FIRRTL shows explicitly
that in hardware this is a combinational multiplexer (mux,
lines 13 and 14).

2.2. Directed Software Fuzzing

A software fuzzer is a tool that tests a program by
generating inputs that explore its code in the hope of find-
ing “crashes”, such as assertion failures or segmentation
faults. Mutational fuzzers take an initial input and mu-
tate this seed to generate new inputs. Modern mutational
fuzzers are greybox [4], in that they select their mutants
based on execution feedback such as code coverage: in-
formation from the program to identify “good” mutations,
e.g., those that explored code which was not seen before.



Figure 1: Overview of the fuzzer stages, components and fuzzing feedback loop.

A large body of works exists that explore different aspects
of software fuzzing, but most state-of-the-art fuzzers [4],
[18] use some variation of branch coverage: the target
program is instrumented to record which branches are
taken. Mutated inputs that hit new coverage are added
back to the queue of inputs, so that they will later be
used again for further mutations.

A fuzzer operating in this manner will explore the
program as broadly as possible, since the exploration is
rewarded by the coverage feedback. Directed fuzzers [10],
[11], [12], [13], on the other hand, try to fuzz towards a
specific target, such as a particular target code location.
For this purpose, they use additional feedback from the
program to measure a distance to the target. The latter
estimates how far the input was from reaching the target,
a metric useful to prioritize mutants: those with a shorter
distance to target are preferred. The distance feedback is
typically computed over the control-flow graph (CFG),
similar to the coverage feedback.

Because the state and execution of software is ex-
pressed through its control flow, the CFG is a logical way
to measure feedback (coverage and distance). However,
as we have seen, hardware designs are normally based
on a data-flow rather than control-flow model. As such,
different coverage metrics are required for hardware [8],
[7], [5]. One such metric, called the register coverage [5],
measures unique states seen during execution, by hashing
all state registers (i.e., sequential logic such as finite
state machines). For our directed fuzzer, we build on
top of this existing coverage metric, more about this in
Section 3.3. But not only hardware fuzzing does require
a different coverage metric than software, it also requires
a completely different approach to tracking distance for
directed fuzzing.

3. BugsBunny: A Directed RTL Fuzzer

To address the issues with hardware fuzzing, such
as state explosion on complex DUTs and the lack of a
CFG, we present BugsBunny, a directed hardware-design
greybox fuzzer, guided by both state coverage of the DUT
and distance-to-target. Figure 1 shows an overview of our
framework. In this section, we briefly describe the overall
goals and concepts of our design before going into more
details, such as how to model the distance on RTL.
Module trimming Our fuzzer can operate on arbitrary
portions (i.e., modules) of the SoC, and eliminate all un-
necessary modules. The resulting design under test (DUT)
can then be evaluated more efficiently. To enable sending
inputs to arbitrary modules, where the interface (e.g., AXI,
TileLink) is unknown, our fuzzer operates at the signal
level. We analyze the input ports of the DUT, and construct
inputs where each signal is a separate value.
Clock awareness As demonstrated in the example of the
Counter of Section 2, data propagates through the DUT
over the course of several clock cycles, and data must be
fed in for each clock cycle. Our fuzzer generates inputs
containing a number of packets. Each packet represents
the signal values for a single clock cycle. An input with
three packets would thus start from the reset state of the
module, then run the DUT for three clock cycles.
Fuzzing target Our fuzzer is directed towards a certain
target state: the state the fuzzer should trigger (through
a single input) for it to finish. This target state could
be a single internal signal (wire or register) having a
particular value (e.g., an existing exception signal), or a
combination of signals (e.g., a pipeline-flush signal and
a cache-miss signal being high). The target can also be
defined automatically, such as the condition of an assert



enabled incr

cnt_next

max reset

cnt_wrap

mux rst

cnt

out

Figure 2: Dependency tree for Counter with target out.

statement, or the state of a previous bug when using the
fuzzer testing hardware vulnerabilities mitigations.

Dependency tree Based on the fuzzing target, BugsBunny
creates a dependency tree (deptree) of the data flow of
the fuzzing target signal(s). This is done statically during
compilation and is a lightweight operation: starting from
the target, walk backwards until module input ports are
reached. The resulting deptree contains all the informa-
tion to reconstruct the data flow of the DUT to reach
the fuzzing target, such as (clock-sensitive) registers and
muxes. The deptree for Counter with target out is shown
in Figure 2. The deptree serves two purposes: input space
reduction and distance modelling. The latter is quite com-
plex and Section 3.3 describes how the deptree is used
for distance calculations. The former is simple: the fuzzer
only needs to include signals in its packets that can (in
any way) influence the target signal.

Fuzzing and input execution It is the fuzzer’s job to
create inputs based on the deptree and feedback from
previous executions. The inputs it generates are then run
through the DUT. BugsBunny can execute these tests
either in a simulator on the host machine or on a (more
scalable) FPGA-hosted environment. From the perspective
of the fuzzer, the underlying execution model is simple:
it simply feeds in the inputs and expects as feedback the
coverage, the distance, and the state of the target signal(s).

Figure 1 demonstrates how all these concepts and
components come together. All components to the left
are part of the RTL analysis and instrumentation, which
are performed once by the compiler. The output of the
static analysis (the deptree) is passed to the fuzzer for
future distance calculations. The fuzzer then drives the
fuzzing loop until the target state is found. In the following
sections, we describe these components in more detail.

3.1. RTL Static Analysis and Instrumentation

The goal of the compilation phase is to provide all
information required during runtime for the fuzzer, which
includes static analysis (deptree) and transformation of
the DUT to expose coverage and distance feedback. The
result is an instrumented RTL (Verilog) file, which has all
irrelevant modules trimmed, exposes signals for feedback
during runtime, and has control signals added for the
fuzzer to reset the state between inputs.

BugsBunny can compose multiple FIRRTL compiler
passes written in Scala, and reuses existing ones alongside
newly written ones. For example, for coverage, Bugs-
Bunny simply reuses existing state-of-the-art RTL reg-
ister coverage from DifuzzRTL [5]. Moreover, if future
research introduces better coverage metrics for RTL, these
passes can easily be plugged in.

3.2. The Fuzzing Loop

At a high level, the fuzzer generates or mutates inputs,
executes them on the instrumented DUT, and retrieves
feedback used for future iterations of the fuzzer loop. This
flow is shown by the red and blue arrows in Figure 1. The
fuzzer generates a single input that consists of multiple
packets, each packet representing the value of the input
signals for a particular clock cycle. The fuzzer feeds these
inputs to the RTL runner (red arrows), which returns
feedback about the execution (blue arrows). The design of
our fuzzer is mainly based on that of software fuzzers such
as AFL++ [4], with some custom mutators that operate on
the signal and packet level (e.g., duplicate a packet).

In order to maximize the fuzzing throughput, we pro-
pose a feedback hierarchy of different filters, each dis-
carding useless inputs as early as possible. Each feedback
filter is more expensive to calculate but is required less
frequently than the previous one. The first feedback filter
is built on top of the register coverage [5] metric, which
models the DUT states through its control registers. This
feedback filter checks if an input increased the state cov-
erage of the DUT, and if not, the input is not considered
useful and is immediately discarded. If the coverage did
increase, the second feedback filter is applied, where an
approximation of the distance-to-target is calculated and
the input is inserted in the priority queue of the fuzzer
based on its distance score. In most cases, the fuzzer will
then start the loop over again, picking the best-performing
input (i.e., the one with the shortest distance-to-target)
from the queue to mutate. However, these filters are
extensible, and for example a more complex but accurate
distance calculation can be used in cases where the fuzzer
does not make progress.

3.3. Distance to Target

The distance function models the distance between
how far an input has made it (from the input ports of the
module) to the target signal. Instead of using costly proper
data-flow tracking analysis and instrumentation (e.g., taint
analysis), we instead do this heuristically through more
light-weight instrumentation that can run on FPGAs. Af-
ter statically constructing the deptree of the target, we
instrument all multiplexers (muxes) along the path of this



deptree to expose their state to the fuzzer. At runtime we
read the state of these selected muxes, and map this mux-
toggle coverage [7] onto the deptree. Then, we calculate
the shortest path from the target to a toggled mux to obtain
the distance-to-target.

Intuitively, a mux can only toggle if data has propa-
gated to the control condition of that mux, giving us some
notion of how far data is flowing along the path of the dep-
tree. In practice, however, there are several complications
with this scheme that require attention. Firstly, we do not
know the “correct” position of each mux, and a mux may
already be in the right position at reset to reach the target
signal (and flipping it results in getting further away from
the target). As such, our distance model does not require
all muxes to flip, nor must the distance be zero, it simply
has to become less overall.

A more difficult issue is that of the time dimension:
our deptree and the mux state give a snapshot of a single
clock cycle, but data must often flow through the DUT for
several clock cycles. Often it is not possible to toggle all
muxes every clock: if there are two muxes controlled by
opposite conditions of the same input, then they cannot
both be true in the same clock cycle. To account for
this, we introduce the concept of partitions on top of the
deptree. Partitions are subtrees of the deptree that are sep-
arated by registers (i.e., clock-sensitive sequential logic).
In our example of the Counter, we have two partitions:
one containing all muxes before the cnt register (P1)
and one after (P2, not containing any muxes).

When calculating the distance, each partition calcu-
lates a local distance for only that sub-tree (using the
shortest path from the root to a toggled mux). Then, the
overall distance is calculated as the weighted average of
these partitions, where the weights are dynamic to stim-
ulate data propagating through the design over multiple
clock cycles. For early clock cycles within a single input,
partitions close to the inputs of the module are biased
(i.e., P1 is favored over P2), whereas for the last clock
cycle of an input we favor partitions closer to the target
(P2). This algorithm takes into account reachability from
the inputs (“can this input-port still influence the target
in any way?”) and from the target (“could this partition
already be influenced by an input early on?”).

3.4. RTL Runner

The RTL runner is fed the (instrumented) RTL and a
constant stream of inputs from the fuzzer, and is respon-
sible for running these inputs on the DUT. One approach
it can take is running them on a simulator: the Verilog
is compiled to a software simulation using Verilator [19].
Since everything is in software, this approach is simple:
we can feed and inspect any signal of the DUT, and simu-
late the execution of a single clock cycle at will. However,
this approach does not scale well to large designs, leading
to a very low throughput of inputs per second.

Therefore the RTL runner can alternatively execute
the DUT on an FPGA. Here the DUT can run at much
higher speeds (e.g., 100MHz) even for complex designs.
However, controlling the DUT is much more difficult.
First of all, the inputs must be transferred from the fuzzer
to the FPGA, and the feedback must be transferred back.
Furthermore, the DUT must be carefully controlled: if an

TABLE 1: Fuzzing Targets

Design under test Target signal

Counter example (Counter) cnt == 123
BOOM-Core Reorder Buffer (ROB) is_mini_exception
BOOM-Core Load-Store Unite (LSU) r_xcpt_valid

input contains six packets, these packets must be fed in at
consecutive clock cycles (at 100MHz speeds); the DUT
cannot be paused.

To tackle these problems, we have written a custom
Verilog DUT wrapper connecting the fuzzer on the host
with the DUT. On one side, it is connected to the PCIe
bus, on the other side it has full control over all signals
going in and out of the DUT. It communicates over PCIe
to receive input data and respond with the feedback data.
This data is cached in memory inside the DUT wrapper.
This gives the fuzzer time to prepare all data, and during
this time the DUT is held in a reset state. Once ready, the
DUT wrapper stops resetting for the specified number of
clock cycles (e.g., six, matching the number of packets
in the input), and it feeds in the data from memory to
the DUT. Once all packets are consumed by the DUT, the
current feedback is latched into memory inside the DUT
wrapper ready to be read by the fuzzer.

For the FPGA-based executions, we use Vivado with
its qdma IP block for PCIe communication. For complex
designs, Vivado might take over 2 hours to produce a
bitstream file for the FPGA. However, as we will show
in the evaluation in Section 4, the performance increase
easily amortizes this during fuzzing.

4. Evaluation

To evaluate our prototype fuzzing framework we ran
it on several subsets of the BOOMv3 RISC-V core [14].
These results, while preliminary, show that our design can
be applied to complex real-world hardware designs. All
experiments were performed on a machine with an Intel
i9-12900K CPU, 128GB RAM, running Ubuntu 20.04.
For RTL simulations, we used Verilator 4.028. For FPGA
experiments, we used a Xilinx VCU118 FPGA connected
via PCIe x16, with synthesis done by Vivado 2020.2 and
the DUT running at 100MHz. For the targets of this evalu-
ation, we ran our toy Counter example and also considered
two modules from the BOOM core: the re-order buffer
(ROB) and the LSU load-store unit (LSU). As a target,
we selected a signal in each that is relatively hard to
reach and indicates some form of exception occurred. The
LSU represents the single largest module in the BOOM
core, whereas the ROB is a medium-sized module. Table 1
summarizes our targets.

To evaluate the execution efficiency of our framework,
the effect of using the FPGA, and the impact of distance
calculations, we measured the raw fuzzer performance
in inputs per seconds. The results of these experiments
can be found in Table 2. We can see that while the
performance of the FPGA is on-par with that of software
simulation for toy programs, the software simulations do
not scale at all. Even for medium sized DUTs like the
ROB and LSU, the performance of an FPGA is orders
of magnitude higher. This difference is unsurprising: for



TABLE 2: Fuzzing performance comparison between SW
simulation and FPGA (inputs per second where each input
contains 1 packet only)

Design Verilator FPGA
under test Cov. Cov. + Dist. Cov. Cov. + Dist.

Counter 1,569,118 1,583,030 1,738,340 1,760,600
ROB 1,208 1,150 16,720 17,769
LSU 24 24 11,453 5,080

software simulations most logic has to be calculated se-
quentially for each clock cycle, an approach that scales
poorly as the complexity increases. On the other hand,
the performance of the FPGA-based executions does not
suffer from this problem: as long as timing constraints can
still be met, the DUT can run at high frequencies. For
FPGA performance, the bottleneck is instead the commu-
nication overhead. The more bits have to be transferred
to the FPGA (packets and signals), the slower execution
becomes. Similarly, the more data has to be read back
from the FPGA, the more performance suffers. This can be
observed when comparing the “Cov.” and “Cov. + Dist.”
results: when using distance, the fuzzer will read back
the mux state every time it has to calculate the distance.
While some slowdown stems from the distance calculation
algorithm in Python, the majority comes from the data
reads over PCIe. This also explains why the performance
of both versions of Verilator are so close.

Finally, we gathered preliminary results on the ef-
fectiveness of our work-in-progress directed fuzzer and
its distance algorithm. Table 3 shows two metrics often
used to evaluate (directed) fuzzers: time-to-exposure and
seeds-to-exposure. This is simply the (median) time and
seeds that was required to reach the target, with lower
values indicating faster progress. For the medium-sized
ROB module, our fuzzer already finds a satisfying input
during its initialization phase (where it generates random
seeds for later mutations) in all cases. This shows that on
relatively simple modules the search space can easily be
explored without the need for (directed) fuzzing. On the
other hand, for the more complicated LSU module, we
can see the time in seconds is slightly lower when using
the distance feedback, albeit not significantly since the
module is still relatively small. More notably, the seeds to
exposure do differ by an order of magnitude. As we close
the performance gap between the two configurations (as
we will discuss in Section 5), this will result in far better
results in time as well. Because BugsBunny does not
currently support directed fuzzing on multiple modules,
we can only present results for complex single modules,
with the LSU being the most complicated module of the
BOOM core. With more work, BugsBunny should also
support larger DUTs, where the effect should also be more
noticeable. Nevertheless, these results show BugsBunny
can have a significant impact on the fuzzing speed when
aiming for certain targets.

5. Discussion and Future Work

While BugsBunny shows promising results in the area
of directed RTL fuzzing, there is still a lot of room for
improvement:

TABLE 3: Distance metric evaluation results (me-
dian over 100 runs, time measured on FPGA)

Design Seeds-to-exposure Time-to-exposure
under test Cov. Cov. + Dist. Cov. Cov. + Dist.

ROB n/a n/a 0.1 s 0.1 s
LSU 486.0 20.5 24 s 19 s

Inter-module distance The current prototype only accu-
rately models distance on a single module. While Bugs-
Bunny supports DUTs with multiple modules, no feedback
is present to guide to fuzzer towards this module. While
recent work has investigated this area [20], a more efficient
and scalable metric is required, in the form of coarse-
grained inter-module data-flow information.
Distance accuracy Currently the feedback loop of the
fuzzer only uses a single approximate distance-to-target
calculation, where efficiency is favored over accuracy. As
an additional filter, more accurate but expensive distance
calculations can be added for situations when the fuzzer
is stuck. For example, an option is to perform dynamic
taint analysis [11] and measure the influence of the input
on the mux state (for every input signal of every packet).
This approach can thus more accurately measure how far
the input affects the internal DUT state, but negatively
impacts fuzzing throughput.
On-FPGA distance Currently our performance suffers
from transferring the required data from the FPGA to the
host to calculate distance. We can eliminate this overhead
by implementing the distance function on the FPGA itself,
bringing the performance of using distance to the same
levels as that of using only coverage.
On-FPGA mutators BugsBunny implements its entire
fuzzer, including the mutation engine, on the host in
Python. This means after every mutation the input data
needs to be transferred to the FPGA, a relatively slow
process. By implementing the mutators on the FPGA
itself, a significant speedup can be achieved.
Improved coverage metrics As more work is published
in the area of RTL fuzzing, more advanced and accurate
coverage metrics are discovered [8]. Due to the nature of
our framework, these can easily be plugged in to enhance
both the baseline and directed fuzzing performance.

6. Related Work

Hardware design verification has been a topic of inter-
est for long due to the costly nature of errors in hardware,
and is typically done through formal verification [21], [22]
or (semi-)automated input generation such as constrained
random verification (CRV) [23], [24] or coverage directed
test generation (CDG) [25], [26], [27]. Recently, due the
an in increase in hardware vulnerabilities [1], [2] and the
rise of software fuzzing, we have seen a renewed interest
in hardware fuzzing [7], [5], [8], [6], [9], [28]. Many of the
commonly used techniques (e.g., formal verification and
CRV) require significant manual work from verification
engineers, something fuzzers aim to address. Many of
the existing techniques only work in a simulation envi-
ronment, due to tight coupling with the simulator (e.g.,
for coverage feedback) [6], [8], [25], [28] or cannot scale
well to accelerator FPGA environments [7]. In contrast,



BugsBunny has synthesizable feedback instrumentation
for efficient test execution.

Our work builds on top of recent hardware fuzzing
developments [7], [5], and adds the concept of directed
fuzzing. Recent work in the same direction [20] only
focuses on guiding inputs to the right module overall,
whereas BugsBunny focusses on a specific target state.

On the software side, directed fuzzers show their
effectiveness in finding specific targets [13], [12], [11],
but typically operate on the program’s CFG, a concept
that does not easily transfer to hardware fuzzing. Recent
work to apply conventional software fuzzers to hardware
designs (e.g., by applying them on the simulator [6])
shows only limited effectiveness.

7. Conclusion

In this paper, we presented a work-in-progress design
and implementation of a directed fuzzing framework for
RTL. By using module trimming and directed fuzzing
based on a distance-to-target fitness function, our prelimi-
nary results show this is a promising direction of research
in the area of hardware design fuzzing.

Acknowledgements

We thank Marco Spaziani Brunella for his input, and
the anonymous reviewers for their valuable feedback. This
work was supported by Intel Corporation through the Side
Channel Vulnerability ISRA, and the Netherlands Organ-
isation for Scientific Research through projects “TROP-
ICS” and “Intersect”.

References

[1] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and
Y. Yarom, “Spectre Attacks: Exploiting Speculative Execution,” in
S&P, 2019.

[2] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue in-flight data
load,” in S&P, 2019.

[3] E. Barberis, P. Frigo, M. Muench, H. Bos, and C. Giuffrida,
“Branch History Injection: On the Effectiveness of Hardware Mit-
igations Against Cross-Privilege Spectre-v2 Attacks,” in USENIX
Security, 2022.

[4] A. Fioraldi, D. Maier, H. Eißfeldt, and M. Heuse, “AFL++: Com-
bining incremental steps of fuzzing research,” in WOOT, 2020.

[5] J. Hur, S. Song, D. Kwon, E. Baek, J. Kim, and B. Lee, “DI-
FUZZRTL: Differential fuzz testing to find CPU bugs,” in S&P,
2021.

[6] T. Trippel, K. G. Shin, A. Chernyakhovsky, G. Kelly, D. Rizzo,
and M. Hicks, “Fuzzing hardware like software,” arXiv preprint
arXiv:2102.02308, 2021.

[7] K. Laeufer, J. Koenig, D. Kim, J. Bachrach, and K. Sen, “RFUZZ:
Coverage-directed fuzz testing of RTL on FPGAs,” in ICCAD,
2018.

[8] A. Tyagi, A. Crump, A.-R. Sadeghi, G. Persyn, J. Rajendran,
P. Jauernig, and R. Kande, “TheHuzz: Instruction fuzzing of
processors using golden-reference models for finding software-
exploitable vulnerabilities,” arXiv preprint arXiv:2201.09941,
2022.

[9] S. K. Muduli, G. Takhar, and P. Subramanyan, “Hyperfuzzing for
SoC security validation,” in ICCAD, 2020.

[10] H. Huang, Y. Guo, Q. Shi, P. Yao, R. Wu, and C. Zhang, “BEA-
CON: Directed grey-box fuzzing with provable path pruning,” in
S&P, 2022.

[11] S. Österlund, K. Razavi, H. Bos, and C. Giuffrida, “Parmesan:
Sanitizer-guided greybox fuzzing,” in USENIX Security, 2020.

[12] H. Chen, Y. Xue, Y. Li, B. Chen, X. Xie, X. Wu, and Y. Liu,
“Hawkeye: Towards a desired directed grey-box fuzzer,” in CCS,
2018.

[13] M. Böhme, V.-T. Pham, M.-D. Nguyen, and A. Roychoudhury,
“Directed greybox fuzzing,” in CCS, 2017.

[14] J. Zhao, A. Gonzalez, B. Korpan, and K. Asanovic, “SonicBOOM:
The 3rd generation berkeley out-of-order machine,” in CARRV,
2020.

[15] A. Izraelevitz, J. Koenig, P. Li, R. Lin, A. Wang, A. Magyar,
D. Kim, C. Schmidt, C. Markley, J. Lawson, and J. Bachrach,
“Reusability is FIRRTL ground: Hardware construction languages,
compiler frameworks, and transformations,” in ICCAD, 2017.

[16] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman,
R. Avižienis, J. Wawrzynek, and K. Asanović, “Chisel: Construct-
ing hardware in a Scala embedded language,” in DAC, 2012.

[17] K. Asanović, R. Avizienis, J. Bachrach, S. Beamer, D. Bian-
colin, C. Celio, H. Cook, D. Dabbelt, J. Hauser, A. Izraelevitz,
S. Karandikar, B. Keller, D. Kim, J. Koenig, Y. Lee, E. Love,
M. Maas, A. Magyar, H. Mao, M. Moreto, A. Ou, D. A. Patterson,
B. Richards, C. Schmidt, S. Twigg, H. Vo, and A. Waterman,
“The Rocket Chip generator,” EECS Department, University of
California, Berkeley, Tech. Rep. UCB/EECS-2016-17, Apr 2016.

[18] P. Chen and H. Chen, “Angora: Efficient fuzzing by principled
search,” in S&P, 2018.

[19] W. Snyder, “Verilator,” https://www.veripool.org/verilator/, Ac-
cessed: 2022-03-23.

[20] S. Canakci, L. Delshadtehrani, F. Eris, M. B. Taylor, M. Egele, and
A. Joshi, “DirectFuzz: Automated test generation for RTL designs
using directed graybox fuzzing,” in DAC, 2021.

[21] M. R. Fadiheh, A. Wezel, J. Muller, J. Bormann, S. Ray, J. M.
Fung, S. Mitra, D. Stoffel, and W. Kunz, “An exhaustive approach
to detecting transient execution side channels in RTL designs of
processors,” IEEE Transactions on Computers, 2022.

[22] Cadence, “JasperGold.”

[23] J. Yuan, C. Pixley, and A. Aziz, Constraint-based verification.
Springer, 2006.

[24] F. Haedicke, H. M. Le, D. Große, and R. Drechsler, “CRAVE:
An advanced constrained random verification environment for Sys-
temC,” in SoC, 2012.

[25] S. Fine and A. Ziv, “Coverage directed test generation for func-
tional verification using bayesian networks,” in DAC, 2003.

[26] G. Squillero, “MicroGP—an evolutionary assembly program gen-
erator,” Genetic Programming and Evolvable Machines, 2005.

[27] K. Gent, M. Li, and M. S. Hsiao, “Design validation of RTL circuits
using evolutionary swarm intelligence,” in ITC, 2012.

[28] K. Ruep and D. Groß, “SpinalFuzz: Coverage-guided fuzzing for
SpinalHDL designs,” in ETS, 2022.

https://www.veripool.org/verilator/

	Introduction
	Background
	Hardware Design
	Directed Software Fuzzing

	BugsBunny: A Directed RTL Fuzzer
	RTL Static Analysis and Instrumentation
	The Fuzzing Loop
	Distance to Target
	RTL Runner

	Evaluation
	Discussion and Future Work
	Related Work
	Conclusion
	References

